skip to main content

Visible-light Degradation of Methylene Blue using Energy-Efficient Carbon-Doped TiO2: Kinetic Study and Mechanism

1School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

2Department of Mathematics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

3Catalysis Science and Technology Research Centre (PutraCat), Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

4 Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

5 College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China

View all affiliations
Received: 1 Feb 2025; Revised: 3 Mar 2025; Accepted: 4 Mar 2025; Available online: 6 Mar 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Wastewater pollution is mainly produced from the dye textile industry and the most widely used photocatalyst to degrade dye textile is TiO2 due to its photostability, low toxicity, and low production cost. However, TiO2 is only responsive under UV light; thus, our study is to extend the TiO2 absorption light to visible region via doping of bio-based carbon source, viz. ascorbic acid, to produce carbon-doped TiO2. The carbon-doped TiO2 were solvothermally synthesized with varying carbon loadings (10, 30, and 50 wt%) and calcination temperatures (250, 300, and 400 oC). The functional groups of carbon-doped TiO2 were determined, which the carbonyl groups (C=O) at 1700 cm-1, alkenyl groups (C=C) at 1630-1670 cm-1, hydroxyl groups at 3380-3390 cm-1, and TiO2 appeared at 450 cm-1. The absorption spectra shifted from UV to visible-light region and the band gap was reduced compared to undoped TiO2. The photoluminescence results showed that the surface oxygen vacancies (SOVs) are generated for carbon-doped TiO2. The Ti–C bond formation was proved through diffractogram peak shifting, while the crystallite sizes decrease with increasing carbon amount and decreasing calcination temperature. The highest methylene blue photodegradation of 89.53% was achieved by 30 wt%C-TiO2-250 photocatalyst at pH 10 under 2 h visible light irradiation. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Carbon-doped TiO2; green synthesis; dye photodegradation; wastewater; band gap; environmental sustainability
Funding: Xiamen University Malaysia Research Fund under contract XMUMRF/2019-C4/IENG/0019; Xiamen University Malaysia Research Fund under contract XMUMRF/2025-C15/IENG/0077

Article Metrics:

  1. Hudd, A. (2022). Dyeing for fashion: Why the clothes industry is causing 20% of water pollution. URL: https://www.euronews.com/green/2022/02/26/dyeing-for-fashion-why-the-fashion-industry-is-causing-20-of-water-pollution
  2. Stokes, J. (2023). Textile industry: water management. URL: https://pciaw.org/textile-industry-water-management/
  3. Gómez-Avilés, A., Peñas-Garzón, M., Bedia, J., Rodriguez, J.J., Belver, C. (2019). C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 358, 1574–1582. DOI: 10.1016/j.cej.2018.10.154
  4. Wu, X., Yin, S., Dong, Q., Guo, C., Li, H., Kimura, T., Sato, T. (2013). Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Applied Catalysis B: Environmental, 142–143, 450–457. DOI: 10.1016/j.apcatb.2013.05.052
  5. Negi, C., Kandwal, P., Rawat, J., Sharma, M., Sharma, H., Dalapati, G., Dwivedi, C. (2021). Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Applied Surface Science, 554 DOI: 10.1016/j.apsusc.2021.149553
  6. Mkhalid, I.A., Ismail, A.A., Hussein, M.A., Al thomali, R.H.M. (2023). Visible-light-induced V2O5-TiO2 photocatalysts with high photocatalytic ability for degradation of tetracycline. Optical Materials, 135, 113263. DOI: 10.1016/j.optmat.2022.113263
  7. Lee, H., Jang, H.S., Kim, N.Y., Joo, J.B. (2021). Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions. Journal of Industrial and Engineering Chemistry, 99, 352–363. DOI: 10.1016/j.jiec.2021.04.045
  8. Kumari, N., Chintakula, S., Sai Sonali Anantha, I., Maddila, S. (2023). An efficient P3TA/Fe doped TiO2 catalyst for photo-degradation of Brilliant green dye and inactivation of pathogens under visible light. Results in Chemistry, 5, 100759. DOI: 10.1016/j.rechem.2022.100759
  9. Zhang, Z., Zhao, C., Duan, Y., Wang, C., Zhao, Z., Wang, H., Gao, Y. (2020). Phosphorus-doped TiO2 for visible light-driven oxidative coupling of benzyl amines and photodegradation of phenol. Applied Surface Science, 527, 146693. DOI: 10.1016/j.apsusc.2020.146693
  10. Jiang, L., Luo, Z., Li, Y., Wang, W., Li, J., Li, J., Ao, Y., He, J., Sharma, V.K., Wang, J. (2020). Morphology- and Phase-Controlled Synthesis of Visible-Light-Activated S-doped TiO2 with Tunable S4+/S6+ Ratio. Chemical Engineering Journal, 402, 125549. DOI: 10.1016/j.cej.2020.125549
  11. Guan, S., Cheng, Y., Hao, L., Yoshida, H., Tarashima, C., Zhan, T., Itoi, T., Qiu, T., Lu, Y. (2023). Oxygen vacancies induced band gap narrowing for efficient visible-light response in carbon-doped TiO2. Scientific Reports, 13(1), 14105. DOI: 10.1038/s41598-023-39523-6
  12. Adel Hamza, M., Abd El-Rahman, S.A., Ramadan, S.K., Ezz-Elregal, E.-E.M., Rizk, S.A., Abou-Gamra, Z.M. (2024). The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 452, 115599. DOI: 10.1016/j.jphotochem.2024.115599
  13. Zhao, J., Wang, B., Zhao, Y., Hou, M., Xin, C., Li, Q., Yu, X. (2023). High-performance visible-light photocatalysis induced by dye-sensitized Ti3+-TiO2 microspheres. Journal of Physics and Chemistry of Solids, 179, 111374. DOI: 10.1016/j.jpcs.2023.111374
  14. Matos, J., García, A., Zhao, L., Titirici, M.M. (2010). Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Applied Catalysis A: General, 390(1–2), 175–182. DOI: 10.1016/j.apcata.2010.10.009
  15. Zhong, J., Chen, F., Zhang, J. (2010). Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. Journal of Physical Chemistry C, 114(2), 933–939. DOI: 10.1021/jp909835m
  16. Teng, F., Zhang, G., Wang, Y., Gao, C., Chen, L., Zhang, P., Zhang, Z., Xie, E. (2014). The role of carbon in the photocatalytic reaction of carbon/TiO2 photocatalysts. Applied Surface Science, 320, 703–709. DOI: 10.1016/j.apsusc.2014.09.153
  17. Kavitha, R., Devi, L.G. (2014). Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis. Journal of Environmental Chemical Engineering, 2(2), 857–867. DOI: 10.1016/j.jece.2014.02.016
  18. Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W. (2009). Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Environmental, 91(1–2), 355–361. DOI: 10.1016/j.apcatb.2009.06.001
  19. Ghime, D., Mohapatra, T., Verma, A., Banjare, V., Ghosh, P. (2020). Photodegradation of aqueous eosin yellow dye by carbon-doped TiO2 photocatalyst. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing LtdDOI: 10.1088/1755-1315/597/1/012010
  20. Xiao, Q., Zhang, J., Xiao, C., Si, Z., Tan, X. (2008). Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy, 82(8), 706–713. DOI: 10.1016/j.solener.2008.02.006
  21. Carbajo, J., Adán, C., Rey, A., Martínez-Arias, A., Bahamonde, A. (2011). Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts. Applied Catalysis B: Environmental, 102(1–2), 85–93. DOI: 10.1016/j.apcatb.2010.11.028
  22. Rasoulnezhad, H., Kavel, G.K., Ahmadi, K., Rahimipour, M.R. (2017). Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film. Applied Surface Science, 408, 1–10
  23. Qi, D., Xing, M., Zhang, J. (2014). Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. Journal of Physical Chemistry C, 118(14), 7329–7336. DOI: 10.1021/jp4123979
  24. Astuti, Y., Musthafa, F., Arnelli, A., Nurhasanah, I. (2022). French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity. Bulletin of Chemical Reaction Engineering and Catalysis, 17(1), 146–156. DOI: 10.9767/BCREC.17.1.12554.146-156
  25. Sunardi, A.B.T., Choirunnisa, F., Dewi, A.S.P., Widiyandari, H., Astuti, Y., Arutanti, O., Salim, A.A., Mufti, N. (2025). Enriched photocatalytic degradation of methylene orange dye using carbon quantum dots surface-decorated TiO2 nanocomposites. Materials Chemistry and Physics, 329 DOI: 10.1016/j.matchemphys.2024.130049
  26. Al-Amin, M., Dey, S.C., Rashid, T.U., Ashaduzzaman, M., Shamsuddin, S.M. (2016). Solar Assisted Photocatalytic Degradation of Reactive Azo Dyes in Presence of Anatase Titanium Dioxide Alkylation of cresols View project Solar Assisted Photocatalytic Degradation of Reactive Azo Dyes in Presence of Anatase Titanium Dioxide. International Journal of Latest Research in Engineering and Technology (IJLRET, 2, 14–21. DOI: 10.1016/j.solmat.2003.11.022
  27. Li, W., Liang, R., Zhou, N.Y., Pan, Z. (2020). Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega, 5(17), 10042–10051. DOI: 10.1021/acsomega.0c00504
  28. Zhong, J., Chen, F., Zhang, J. (2010). Carbon-deposited TiO2: Synthesis, characterization, and visible photocatalytic performance. Journal of Physical Chemistry C, 114(2), 933–939. DOI: 10.1021/jp909835m
  29. Jafari, S., Tryba, B., Kusiak-Nejman, E., Kapica-Kozar, J., Morawski, A.W., Sillanpää, M. (2016). The role of adsorption in the photocatalytic decomposition of Orange II on carbon-modified TiO2. Journal of Molecular Liquids, 220, 504–512. DOI: 10.1016/j.molliq.2016.02.014
  30. Mert, E.H., Yalçın, Y., Kılıç, M., San, N., Çınar, Z. (2008). Surface Modification of TiO2 with Ascorbic Acid for Heterogeneous Photocatalysis: Theory and Experiment. Journal of Advanced Oxidation Technologies, 11(2) DOI: 10.1515/jaots-2008-0203
  31. Simonetti, E.A.N., De Simone Cividanes, L., Campos, T.M.B., De Menezes, B.R.C., Brito, F.S., Thim, G.P. (2016). Carbon and TiO2 synergistic effect on methylene blue adsorption. Materials Chemistry and Physics, 177, 330–338. DOI: 10.1016/j.matchemphys.2016.04.035
  32. Sean, N.A., Leaw, W.L., Nur, H. (2019). Effect of calcination temperature on the photocatalytic activity of carbon-doped titanium dioxide revealed by photoluminescence study. Journal of the Chinese Chemical Society, 66(10), 1277–1283. DOI: 10.1002/jccs.201800389
  33. Lin, Y.T., Weng, C.H., Lin, Y.H., Shiesh, C.C., Chen, F.Y. (2013). Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Separation and Purification Technology, 116, 114–123. DOI: 10.1016/j.seppur.2013.05.018
  34. Saiful Amran, S.N.B., Wongso, V., Abdul Halim, N.S., Husni, M.K., Sambudi, N.S., Wirzal, M.D.H. (2019). Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 7(3), 321–330. DOI: 10.1080/21870764.2019.1636929
  35. Muniandy, L., Adam, F., Mohamed, A.R., Ng, E.-P., Rahman, N.R.A. (2016). Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study. Surfaces and Interfaces, 5, 19–29. DOI: 10.1016/j.surfin.2016.08.006
  36. Ma, Y., Han, L., Ma, H., Wang, J., Liu, J., Cheng, L., Yang, J., Zhang, Q. (2017). Improving the visible-light photocatalytic activity of interstitial carbon-doped TiO2 with electron-withdrawing bidentate carboxylate ligands. Catalysis Communications, 95, 1–5. DOI: 10.1016/j.catcom.2017.02.025
  37. Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A. V., Reddy, C.V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 45(13), 7764–7778. DOI: 10.1016/j.ijhydene.2019.07.241
  38. Li, W., Liang, R., Zhou, N.Y., Pan, Z. (2020). Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega, 5(17), 10042–10051. DOI: 10.1021/acsomega.0c00504

Last update:

No citation recorded.

Last update:

No citation recorded.