skip to main content

Molar Ratio Comparison of Ti-Zr as Catalyst Support of Bentonite in Esterification Reaction

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, 50229, Central Java, Indonesia

2Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Tangerang Selatan, 15314, Banten, Indonesia

3Research Center for Agroindustry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Tangerang Selatan, 15314, Banten, Indonesia

Received: 23 Nov 2024; Revised: 11 Feb 2025; Accepted: 15 Feb 2025; Available online: 20 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Natural bentonite from Pacitan - Indonesia as a support in the preparation of Ti and Zr-pillared metal catalysts (Ti-Zr/bent) for esterification reaction were studied. The preparation of Ti-Zr/bent catalyst was prepared to find out the effect of molar ratios (Ti:Zr) where an investigation was performed in the esterification of waste cooking oil. The catalyst was varied as follows: 0.5:1 (Ti-Zr-1/bent), 1:1 (Ti-Zr-2/bent), 1.5:1 (Ti-Zr-3/bent), 2:1 (Ti-Zr-4/bent), and 5:1 (Ti-Zr-5/bent) were used to determine the yield. The reaction was carried out for 3 hours at 150°C and a pressure of 40 bar N2 gasses. The result of the Ti-Zr/bent catalyst was given increasing significantly for surface area of 133–147 m²/g compares to bentonite 27 m²/g and 10 times of acidity. The best catalyst was shown in 2:1 of ratio Ti:Zr (molar) on esterification reaction with succesfuly performed about 80.40% of yield. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Bentonite; Esterification; Pillared clay; Sonication; Waste cooking oil

Article Metrics:

  1. Sisnayati, Said, M., Aprianti, N., Komala, R., Dwipayana, H., Faizal, M. (2022). Metal Pillared Bentonite Synthesis and Its Characteristics Using X-Ray Diffraction. Journal of Ecological Engineering, 23(12), 68–74. DOI: 10.12911/22998993/155081
  2. Taher, T., Mohadi, R., Lesbani, A. (2018). Effect of Ti4+/clay ratio on the properties of titanium pillared bentonite and its application for Cr (VI) removal. Rasayan Journal of Chemistry, 11(3), 1244–1254. DOI: 10.31788/RJC.2018.1133065
  3. Castro, A., Amaya, J., Molina, R., Moreno, S. (2020). Pillarization in concentrated media with solid Al and Al-Zr polymers to obtain acid catalysts. Catalysis Today, 356(March), 284–291. DOI: 10.1016/j.cattod.2019.04.006
  4. Khairina, N.N.L., Kristiani, A., Widjaya, R.R., Agustian, E., Dwiatmoko, A.A., Rinaldi, N. (2022). Conversion of fatty acid into biodiesel using solid catalysts of Ti-Zr and Ti-Cr pillared bentonite. AIP Conference Proceedings, 2493(December) DOI: 10.1063/5.0110942
  5. Agustian, E., Juwono, A.L., Rinaldi, N., Dwiatmoko, A.A. (2023). Pillaring of bentonite clay with Zr, Ti, and Ti/Zr by ultrasonic technique for biodiesel production. South African Journal of Chemical Engineering, 45(June), 228–239. DOI: 10.1016/j.sajce.2023.06.001
  6. Nugraha, B.A., Juwono, A.L., Rinaldi, N., Agustian, E., Bardant, T.B. (2023). Reaction condition optimization of biodiesel from waste cooking oil using Ti-Zr pillared bentonite as a solid acid catalyst by cheminformatics approach. Xvii Mexican Symposium on Medical Physics, 2947, 030003. DOI: 10.1063/5.0173616
  7. El Khalloufi, M., Drevelle, O., Soucy, G. (2021). Titanium: An overview of resources and production methods. Minerals, 11(12) DOI: 10.3390/min11121425
  8. Koizumi, H., Takeuchi, Y., Imai, H., Kawai, T., Yoneyama, T. (2019). Application of titanium and titanium alloys to fixed dental prostheses. Journal of Prosthodontic Research, 63(3), 266–270. DOI: 10.1016/j.jpor.2019.04.011
  9. Zhang, L.C., Chen, L.Y., Wang, L. (2020). Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Advanced Engineering Materials, 22(5). DOI: 10.1002/adem.201901258
  10. Fidan, S., Muhaffel, F., Riool, M., Cempura, G., de Boer, L., Zaat, S.A.J., Filemonowicz, A.C., Cimenoglu, H. (2017). Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics. Materials Science and Engineering C, 71, 565–569. DOI: 10.1016/j.msec.2016.11.035
  11. Rinaldi, N., Kristiani, A. (2017). Physicochemical of pillared clays prepared by several metal oxides. AIP Conference Proceedings, 1823 DOI: 10.1063/1.4978136
  12. Bahranowski, K., Włodarczyk, W., Wisła-Walsh, E., Gaweł, A., Matusik, J., Klimek, A., Gil, B., Michalik-Zym, A., Dula, R., Socha, R.P., Serwicka, E.M. (2015). [Ti,Zr]-pillared montmorillonite - A new quality with respect to Ti- and Zr-pillared clays. Microporous and Mesoporous Materials, 202(C), 155–164. DOI: 10.1016/j.micromeso.2014.09.055
  13. Wan Omar, W.N.N., Amin, N.A.S. (2011). Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology, 92(12), 2397–2405. DOI: 10.1016/j.fuproc.2011.08.009
  14. Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276. DOI: 10.1016/j.matchemphys.2017.09.028
  15. Hamzah, N., Yusof, I., Samad, W.Z., Saleh, S.H., Tajuddin, N.A. (2021). Production of Biodiesel from Waste Cooking Oil Using Bentonite Catalysts. Journal of Academia. 9(1), 139–144
  16. Amaya, J., Bobadilla, L., Azancot, L., Centeno, M. (2020). Potentialization of bentonite properties as support in acid catalysts. Materials Research Bulletin, 123. DOI: 10.1016/j.materresbull.2019.110728
  17. Hajjizadeh, M., Ghammamy, S., Ganjidoust, H., Farsad, F. (2020). Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment. Polish Journal of Environmental Studies, 29(6), 4089–4099. DOI: 10.15244/pjoes/114507
  18. Fisli, A., Yusuf, S., Homokation, P., Bentonit, P., Kation, T., Kerja, C., Alam-bent, P.B. (2006). Pengaruh Homokation Permukaan Bentonit terhadap Penyerapan Kation Cs dan Sr. Indonesian Journal of Materials Science, 2, 206-210. DOI: 10.17146/jusami.2006.0.0.5170
  19. Abdullahi, S.L., Audu, A.A. (2017). Comparative analysis on chemical composition of bentonite clays obtained from Ashaka and tango deposits in Gombe State, Nigeria. ChemSearch Journal, 8(2), 35-40
  20. Kumar, A., Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737-742. DOI: 10.1016/j.matpr.2019.10.037
  21. Ibrahim, A., Mohsen, A., Abdelmksod, A., Ahmed, B., Ahmed, K. (2022). Optimization and Characterization of Acid- Activated Bentonite. 3(1), 66–75. International Journal of Industry and Sustainable Development, 3(1), 66–75
  22. Fitri, I.I. (2022). Pengaruh Temperatur Kalsinasi Grafit-TiO2 terhadap Performa Dye Sensitizer Solar Cell (Dssc) Berbasis Dye dari Daun Suji (Dracaena Angustifolia). Journal of Innovation Research and Knowledge, 2(4) 1971-1982
  23. Bardestani, R., Patience, G.S., Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 97(11), 2781–2791. DOI: 10.1002/cjce.23632
  24. Dyer, A., Gallardo, T., Roberts, C.W. (1989). Preparation and Properties of Clays Pillared With Zirconium and Their Use in Hplc Separations. Studies in Surface Science and Catalysis, 49(C), 389–398. DOI: 10.1016/S0167-2991(08)61736-X
  25. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (2008). Annexes: IUPAC Recommendations: Reporting Physisorption Data for Gas/Solid Systems. Handbook of Heterogeneous Catalysis, 3–5(4), 1503–1516. DOI: 10.1002/9783527619474.ch11
  26. Wen, Z., Yu, X., Tu, S.T., Yan, J., Dahlquist, E. (2010). Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresource Technology, 101(24), 9570–9576. DOI: 10.1016/j.biortech.2010.07.066
  27. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  28. Luo, J., Kamasamudram, K., Currier, N., Yezerets, A. (2018). NH3-TPD methodology for quantifying hydrothermal aging of Cu/SSZ-13 SCR catalysts. Chemical Engineering Science, 190, 60–67. DOI: 10.1016/j.ces.2018.06.015
  29. Zachariou, A., Hawkins, A.P., Howe, R.F., Skakle, J.M.S., Barrow, N., Collier, P., Nye, D.W., Smith, R.I., Stenning, G.B.G., Parker, S.F., Lennon, D. (2023). Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst. ACS Physical Chemistry Au, 3(1), 74–83. DOI: 10.1021/acsphyschemau.2c00040
  30. Liu, D., Yuan, P., Liu, H., Cai, J., Tan, D., He, H., Zhu, J., Chen, T. (2013). Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 80–81, 407–412. DOI: 10.1016/j.clay.2013.07.006
  31. Binitha, N.N., Sugunan, S. (2006). Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 93(1–3), 82–89. DOI: 10.1016/j.micromeso.2006.02.005
  32. Cuevas, J., Cabrera, M.Á., Fernández, C., Mota-Heredia, C., Fernández, R., Torres, E., Turrero, M.J., Ruiz, A.I. (2022). Bentonite Powder XRD Quantitative Analysis Using Rietveld Refinement: Revisiting and Updating Bulk Semiquantitative Mineralogical Compositions. Minerals, 12(6). DOI: 10.3390/min12060772
  33. Gandhi, D., Bandyopadhyay, R., Soni, B. (2022). Naturally occurring bentonite clay: Structural augmentation, characterization and application as catalyst. Materials Today: Proceedings, 57(February), 194–201. DOI: 10.1016/j.matpr.2022.02.346
  34. Carlucci, C., Degennaro, L., Luisi, R. (2019). Titanium dioxide as a catalyst in biodiesel production. Catalysts, 9(1). DOI: 10.3390/catal9010075
  35. Dini, F.W., Helmiyati, H., Krisnandi, Y.K. (2021). Cellulose and TiO2–ZrO2 nanocomposite as a catalyst for glucose conversion to 5-EMF. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 320–330. DOI: 10.9767/bcrec.16.2.10320.320-330
  36. Mandari, V., Devarai, S.K. (2022). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. Bioenergy Research, 15(2), 935–961. DOI: 10.1007/s12155-021-10333-w
  37. Busyairi, M., Muttaqin, A.Z., Meicahyanti, I., Saryadi, S. (2020). Potensi Minyak Jelantah sebagai Biodiesel dan Pengaruh Katalis Serta Waktu Reaksi Terhadap Kualitas Biodiesel Melalui Proses Transesterifikasi. Jurnal Serambi Engineering, 5(2), 933–940. DOI: 10.32672/jse.v5i2.1920
  38. García Martín, J.F., Carrión Ruiz, J., Torres García, M., Feng, C.H., Álvarez Mateos, P. (2019). Esterification of free fatty acids with glycerol within the biodiesel production framework. Processes, 7(11). DOI: 10.3390/pr7110832
  39. Zhang, H., Tian, F., Xu, L., Peng, R., Li, Y., Deng, J. (2020). Batch and continuous esterification for the direct synthesis of high qualified biodiesel from waste cooking oils (WCO) with Amberlyst-15/Poly (vinyl alcohol) membrane as a bifunctional catalyst. Chemical Engineering Journal, 388. DOI: 10.1016/j.cej.2020.124214
  40. Saez, B., Santana, A., Ramírez, E., Maҫaira, J., Ledesma, C., Llorca, J., Larrayoz, M.A. (2014). Vegetable oil transesterification in supercritical conditions using co-solvent carbon dioxide over solid catalysts: A screening study. Energy and Fuels, 28(9), 6006–6011. DOI: 10.1021/ef5006786

Last update:

No citation recorded.

Last update:

No citation recorded.