skip to main content

Photocatalytic Mechanism and Charge Transfer of PtS2/WSe2 Heterostructures:First-principles Study

1Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology, Yingkou 115014, China

2School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning, 110819, China

3Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Dept. of Environment Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, Liaoning, China

Received: 8 Nov 2024; Revised: 4 Jan 2025; Accepted: 5 Jan 2025; Available online: 7 Jan 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

To address the recombination problem of photogenerated electrons and holes during photocatalysis, strategies to design composite photocatalysts with heterojunction structures have been widely adopted. In order to explore the electron transfer pathway and photocatalytic mechanism of the PtS2/WSe2 heterostructure, the band structure, electronic properties and catalytic activity of the structure were systematically calculated by density functional theory (DFT). We designed two models consisting of PtS2 and WSe2 monolayers to find more stable structures through adsorption energy calculations. In this work, MUlliken charge analysis and differential charge density confirmed the heterojunction as an S-scheme heterojunction. Due to the height difference between the Fermi levels of the two pristine semiconductors, electrons flow from WSe2 to PtS2 to form a built-in electric field and band bending. The properties of the S-scheme heterojunction allow the heterostructure to possess a suitable band gap without losing the redox ability, thereby ensuring that the PtS2/WSe2 heterostructure can spontaneously undergo HER and OER processes of water splitting. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: DFT; heterostructure; S-scheme; band gap; water splitting
Funding: The Foundation of Liaoning Provincial Key Laboratory of Energy Storage and Utilization under contract CNWK202302

Article Metrics:

  1. Bian, X.N., Zhang, S., Zhao, Y.X., Shi, R., Zhang, T.R. (2021). Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. Infomat. 3, 719-738. DOI: 10.1002/inf2.12192
  2. Su, Y.Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment. 762. DOI: 10.1016/j.scitotenv.2020.144590
  3. Wu, Z.Z., Gao, F.Y., Gao, M.R. (2021). Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy & Environmental Science. 14, 1121-1139. DOI: 10.1039/d0ee02747b
  4. Subramanyam, P., Meena, B., Biju, V., Misawa, H., Challapalli, S. (2022). Emerging materials for plasmon-assisted photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C-Photochemistry Reviews. 51, 100472. DOI: 10.1016/j.jphotochemrev.2021.100472
  5. Acharya, R., Parida, K. (2020). A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. Journal of Environmental Chemical Engineering. 8, 103896. DOI: 10.1016/j.jece.2020.103896
  6. Chen, T., Liu, L.Z., Hu, C., Huang, H.W. (2021). Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis. 42, 1413-1438. DOI: 10.1016/S1872-2067(20)63769-X
  7. Chen, S., Liu, T.X., Zheng, Z.H., Ishaq, M., Liang, G.X., Fan, P., Chen, T., Tang, J. (2022). Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting. Journal of Energy Chemistry. 67, 508-523. DOI: 10.1016/j.jechem.2021.08.062
  8. Shandilya, P., Sambyal, S., Sharma, R., Mandyal, P., Fang, B.Z. (2022). Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. Journal of Hazardous Materials. 428. DOI: 10.1016/j.jhazmat.2022.128218
  9. Astuti, Y., Musthafa, F., Arnelli, A., Nurhasanah I. (2022). French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity. Bulletin of Chemical Reaction Engineering & Catalysis. 17(1), 146-156. DOI: 10.9767/bcrec.17.1.12554.146-156
  10. Astuti, Y., Mulyana, T.N., Tasiman, B.H.A., Darmawan, A., Widyandari, H. (2023). Hydrazine-Fueled Solution Combustion Method: Fuel/Oxidizer Ratio Effects on Photocatalytic Performance of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis. 18(3), 539-547. DOI: 10.9767/bcrec.19943
  11. Opoku, F., Govender, K.K., van Sittert, C.G.C. E., Govender, P.P. (2018). Understanding the synergistic effects, optical and electronic properties of ternary Fe/C/S-doped TiO2 anatase within the DFT plus U approach. International Journal of Quantum Chemistry. 118(5). DOI: 10.1002/qua.25505
  12. Acharya, L., Nayak, S., Pattnaik, S.P., Acharya, R., Parida, K. (2020). Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. Journal of Colloid and Interface Science .566, 211-223. DOI: 10.1016/j.jcis.2020.01.074
  13. Acharya, R., Parida, K. (2020). A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. Journal of Environmental Chemical Engineering, 8. DOI: 10.1016/j.jece.2020.103896
  14. Fu, J.W., Xu, Q.L., Low, J.X., Jiang, C.J., Yu, J.G. (2019).Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B : Environmental. 243, 556-565. DOI: 10.1016/j.apcatb.2018.11.011
  15. Xu, Q., Zhang, L., Cheng, B., Fan, J., Yu J. (2020). S-Scheme Heterojunction Photocatalyst. Chem. 6, 1543-1559. DOI: 10.1016/j.chempr.2020.06.010
  16. Liu, B., Bie, C., Zhang, Y., Wang, L., Li, Y.,Yu, J. (2021). Hierarchically Porous ZnO/g-C3N4 S-Scheme Heterojunction Photocatalyst for Efficient H2O2 Production. Langmuir. 37, 14114-14124. DOI: 10.1021/acs.langmuir.1c02360
  17. Pham, V.V., Mai, D.Q., Bui, D.P., Man, T.V., Cao, T.M. (2021). Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environmental Pollution. 286, 117510. DOI: 10.1016/j.envpol.2021.117510
  18. Jiang, Y, Sun, Z., Chen, Q., Cao, C., Zhao, Y., Yang, W., Zeng, L., Huang, L. (2022). Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting. Applied Surface Science. 571, 151287. DOI: 10.1016/j.apsusc.2021.151287
  19. Zhang, L., Zhang, J., Yu, H., Yu, J. (2022). Emerging S-Scheme Photocatalyst. Advanced Materials. 34, 2107668. DOI: 10.1002/adma.202107668
  20. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology. 9, 768-779. DOI: 10.1038/nnano.2014.207
  21. Pumera, M., Sofer, Z., Ambrosi, A. (2014). Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A. 2, 8981-8987. DOI: 10.1039/c4ta00652f
  22. Li, L., Long, R., Prezhdo, O.V. (2017). Charge Separation and Recombination in Two-Dimensional MoS2/WS2: Time-Domain ab Initio Modeling .Chemistry of Materials. 29, 24662473. DOI: 10.1021/acs.chemmater.6b03727
  23. Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C. (2014). Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano. 8, 1102-1120. DOI: 10.1021/nn500064s
  24. Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko A.N., Geim A.K., Casiraghi C., Castro Neto A.H. and Novoselov K.S .( 2013). Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science. 340, 1311-1314. DOI: 10.1126/science.1235547
  25. Zhu, L., Ding, Y., Yang, W., Yin, S., Cai M. (2021). Effects of doping on photocatalytic water splitting activities of PtS2/SnS2 van der Waals heterostructures. Physical Chemistry Chemical Physics. 23, 18125. DOI: 10.1039/d1cp01777b
  26. Morgan, W.S., Christensen, J.E., Hamilton, P.K., Jorgensen, J.J., Campbell, B.J., Hart, G.L.W., Forcade, R.W. (2020). Generalized regular k-point grid generation on the fly. Computational Materials Science. 173, 109340. DOI: 10.1016/j.commatsci.2019.109340
  27. Hardcastle, T.P., Seabourne, C.R., Zan, R., Brydson, R.M.D., Bangert, U., Ramasse, Q.M., Novoselov, K.S., Scott, A.J. Mobile metal adatoms on single layer, bilayer, and trilayer graphene: An ab initio DFT study with van der Waals corrections correlated with electron microscopy data. Physical Review B. 87, 195430. DOI: 10.1103/PhysRevB.87.195430
  28. Wei, X.B.,Yang, L. ,Sun, S.H., Zhao, Y.S., Liu, H.D. (2024). Strain-induced effects on the optoelectronic properties of ZrSe2/HfSe2 heterostructures. Journal of Molecular Modeling. 30, 3. DOI: 10.1007/s00894-023-05793-0
  29. Almayyali, A.O.M., Kadhim, B.B., Jappor, H.R. (2020). Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chemical Physice. 532, 110679. DOI: 10.1016/j.chemphys.2020.110679
  30. Sun, M., Chou, J., Yu, J., Tang, W. (2017). Effects of structural imperfection on the electronic properties of graphene/WSe2 heterostructures. Journal of Materials Chemistry C. 5, 10383. DOI: 10.1039/c7tc03131a
  31. Aikens, C.M. (2018). Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters. Accounts of Chemical Research. 51, 21, 3065-3073. DOI: 10.1021/acs.accounts.8b00364
  32. Li, X.B., Liu, J.Y., Huang, J.T., He, C.Z., Feng, Z.J., Chen, Z., Wan, L.Y., Deng, F.. (2021). All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance. Acta Physico-Chimica Sinica. 37, 6. DOI: 10.3866/pku.whxb202010030

Last update:

No citation recorded.

Last update:

No citation recorded.