skip to main content

Acidic Deep Eutectic Solvent as a Catalyst for the Esterification of Levulinic Acid to Ethyl Levulinate

1School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

3Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50273, Jalan Prof. Soedarto, SH, Tembalang, Semarang, Indonesia

Received: 14 Nov 2024; Revised: 7 Jan 2025; Accepted: 9 Jan 2025; Available online: 15 Jan 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Deep eutectic solvents (DESs) are environmentally friendly compounds that can be synthesized through the combination of hydrogen-bond donors and acceptors. The diverse applications of DESs underscore their potential as catalysts in various chemical reactions. In this study, an acidic DES was prepared as a catalyst for levulinic acid (LA) esterification with ethanol to produce ethyl levulinate (EL). The acidic DES was prepared from choline chloride and sulfanilic acid through thermal mixing. Characterization of the DES was conducted using Fourier transform infrared-attenuated total reflectance and nuclear magnetic resonance spectroscopy analysis to identify its functional groups and confirm the structure. Additionally, the thermal stability of the DES was analyzed using thermogravimetric analysis, while its acidity was determined using acid-base titration. The esterification of LA with ethanol was assessed under reflux conditions at 80 °C, with specific parameters examined: the molar ratio of LA to ethanol (ranging from 1:5 to 1:13), the ratio of LA to DES (ranging from 1:0.4 to 1:1.4), and the reaction duration (0.5–5 h). The DES used in this work showed an acidity of 2.89 mmol/g. The optimum conditions were obtained at a 1:7 molar ratio of LA to ethanol, a 1:1.2 ratio of LA to DES, and 3 h of reaction time at 80 °C, resulting in 99% conversion of LA to EL. This finding highlights the remarkable catalytic performance of the choline chloride/sulfanilic acid DES in facilitating a highly efficient conversion of LA to EL. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Deep eutectic solvent; Ethyl levulinate; Esterification; Levulinic acid; Sulfanilic acid
Funding: Ministry of Higher Education (MOHE) under contract FRGS/1/2021/TK0/UITM/02/7); Universiti Teknologi MARA (UiTM)

Article Metrics:

  1. Kuwahara, Y., Fujitani, T., Yamashita, H. (2014). Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances. Catalysis Today. 237, 18-28. DOI: 10.1016/j.cattod.2013.11.008
  2. Dharne, S., Bokade, V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry. 20, 18-24. DOI: 10.1016/S1003-9953(10)60147-8
  3. Hassan, A.H., Zainol, M.M., Samion, M.A., Azlan, M.A.q., Asmadi, M., Mohamad Daud, A.R., Saad, I., Mohd Nor Azman, N.A.N. (2023). Synthesis of ethyl levulinate over sulfonated lignin-based carbon catalyst as a fuel additive to biodiesel-diesel blends towards engine emissions. Journal of Cleaner Production. 418, 138101. DOI: 10.1016/j.jclepro.2023.138101
  4. Sivasubramaniam, D., Amin, N.A.S., Ahmad, K., Ramli, N.A.S. (2019). Production of ethyl levulinate via esterification reaction of levulinic acid in the presence of ZrO2 based catalyst. Malaysian Journal of Analytical Sciences. 23, 45-51. DOI: 10.17576/mjas-2019-2301-06
  5. Wang, G., Zhang, Z., Song, L. (2014). Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chemistry. 16, 1436-1443. DOI: 10.1039/C3GC41693C
  6. Sert, M. (2020). Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate. Renewable Energy. 153, 1155-1162. DOI: 10.1016/j.renene.2020.02.070
  7. Saravanamurugan, S., Nguyen Van Buu, O., Riisager, A. (2011). Conversion of mono‐and disaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid‐functionalized ionic liquids. ChemSusChem. 4, 723-726. DOI: 10.1002/cssc.201100137
  8. Ramli, N.A.S., Amin, N.A.S. (2017). Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. BioEnergy Research. 10, 50-63. DOI: 10.1007/s12155-016-9778-3
  9. Hu, A., Wang, H., Ding, J. (2022). Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate Catalyzed by a Deep Eutectic Solvent. ACS Omega. 7, 33192-33198. DOI: 10.1021/acsomega.2c03424
  10. Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L., Qi, Z. (2020). Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy & Environment. 5, 8-21. DOI: 10.1016/j.gee.2019.03.002
  11. Liang, X., Fu, Y., Chang, J. (2019). Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Separation and Purification Technology. 210, 409-416. DOI: 10.1016/j.seppur.2018.08.021
  12. Gawade, A.B., Yadav, G.D. (2018). Microwave assisted synthesis of 5-ethoxymethylfurfural in one pot from d-fructose by using deep eutectic solvent as catalyst under mild condition. Biomass and bioenergy. 117, 38-43. DOI: 10.1016/j.biombioe.2018.07.008
  13. Sert, M., Arslanoğlu, A., Ballice, L. (2018). Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents. Renewable Energy. 118, 993-1000. DOI: 10.1016/j.renene.2017.10.083
  14. Mohd Kamaldin, N.N., Zainol, M.M., Saperi, N.Q., Hassan, A.H., Zainuddin, K.R., Asmadi, M., Suhaimin, N.S., Amin, N.A.S. (2023). Pretreatment of Empty Fruit Bunch using Various Choline Chloride-based Acidic Deep Eutectic Solvents. Malaysian Journal of Chemistry. 25, 139-149. DOI: 10.55373/mjchem.v25i3.139
  15. Liang, X., Zeng, M., Qi, C. (2010). One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon. 48, 1844-1848. DOI: 10.1016/j.carbon.2010.01.030
  16. Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., García, J., Rodríguez, F. (2018). Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids. 260, 37-43. DOI: 10.1016/j.molliq.2018.03.076
  17. Takassi, M.A., Ghol Gheysari, R., Zadehnazari, A., Zargar, G. (2016). A novel synthetic method and potential application of a sulfanilic acid-based surfactant. Journal of Dispersion Science and Technology. 37, 393-397. DOI: 10.1080/01932691.2015.1029585
  18. Archer, L., Jachimska, B., Krzan, M., Szaleniec, M., Hebda, E., Radzik, P., Pielichowski, K., Guzik, M. (2020). Physical properties of biomass-derived novel natural deep eutectic solvents based on choline chloride and (R)-3-hydroxyacids. Journal of Molecular Liquids. 315, 113680. DOI: 10.1016/j.molliq.2020.113680
  19. Othman, Z.S., Koketsu, M., Abd Karim, N.H., Irwan Zubairi, S., Hassan, N. (2018). Interaction study of binary solvent systems ionic liquid and deep eutectic solvent with rotenone. Sains Malays. 47, 1473-1482. DOI: 10.17576/jsm-2018-4707-15
  20. Ping, A., Xia, W., Peng, Y., Xie, G. (2020). Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C NMR, FTIR and XPS. Journal of Molecular Structure. 1222, 128959. DOI: 10.1016/j.molstruc.2020.128959
  21. Millia, L., Dall'Asta, V., Ferrara, C., Berbenni, V., Quartarone, E., Perna, F.M., Capriati, V., Mustarelli, P. (2018). Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics. 323, 44-48. DOI: 10.1016/j.ssi.2018.05.016
  22. Hamza, M., Tariq, M., Sabahat, S., Ahmad, A., Muhammad, N., Rahim, A. (2023). 4 - Biological methods for fabricating nanomaterial-based metal–organic frameworks. In A. Ahmad, F. Verpoort, I. Ahmad, S. Tabassum, and A. Rahim (Editor) Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis. Elsevier
  23. Haz, A., Strizincova, P., Majova, V., Skulcova, A., Jablonsky, M. (2016). Thermal stability of selected deep eutectic solvents. Int. J. Sci. Res. 7, 14441-14444
  24. Chemat, F., Anjum, H., Shariff, A.M., Kumar, P., Murugesan, T. (2016). Thermal and physical properties of (Choline chloride+ urea+ l-arginine) deep eutectic solvents. Journal of Molecular Liquids. 218, 301-308. DOI: 10.1016/j.molliq.2016.02.062
  25. Baco, S., Klinksiek, M., Zakaria, R.I.B., Garcia-Hernandez, E.A., Mignot, M., Legros, J., Held, C., Moreno, V.C., Leveneur, S. (2022). Solvent effect investigation on the acid-catalyzed esterification of levulinic acid by ethanol aided by a Linear Solvation Energy Relationship. Chemical Engineering Science. 260, 117928
  26. Hassan, A.H., Zainol, M.M., Samion, M.A., Asmadi, M., Daud, A.R.M., Saad, I., Azman, N.A.N.M.N. (2023). Synthesis of ethyl levulinate over sulfonated lignin-based carbon catalyst as a fuel additive to biodiesel-diesel blends towards engine emissions. Journal of Cleaner Production. 418, 138101. DOI: 10.1016/j.jclepro.2023.138101
  27. Hassan, A.H., Zainol, M.M., Zainol, M.Z., Asmadi, M., Yusof, M.Y. (2024). Catalytic Esterification of Levulinic Acid to Alkyl Levulinates: Liquid Product Analysis and Separation Study via Extraction. Chemical Engineering Transactions. 113, 85-90. DOI: 10.3303/CET24113015
  28. Nandiwale, K.Y., Niphadkar, P.S., Deshpande, S.S., Bokade, V.V. (2014). Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H‐ZSM‐5. Journal of Chemical Technology & Biotechnology. 89, 1507-1515. DOI: 10.1002/jctb.4228
  29. Li, N., Zhang, X.-L., Zheng, X.-C., Wang, G.-H., Wang, X.-Y., Zheng, G.-P. (2019). Efficient synthesis of ethyl levulinate fuel additives from levulinic acid catalyzed by sulfonated pine needle-derived carbon. Catalysis Surveys from Asia. 23, 171-180. DOI: 10.1007/s10563-019-09270-8
  30. Kalghatgi, S.G., Bhanage, B.M. (2019). Green syntheses of levulinate esters using ionic liquid 1-Methyl imidazolium hydrogen sulphate [MIM][HSO4] in solvent free system. Journal of Molecular Liquids. 281, 70-80. DOI: 10.1016/j.molliq.2019.02.053
  31. Badgujar, K.C., Badgujar, V.C., Bhanage, B.M. (2020). A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology. 197, 106213. DOI: 10.1016/j.fuproc.2019.106213
  32. Mthembu, L., Lokhat, D., Deenadayalu, N. (2023). Esterification of levulinic acid to ethyl levulinate: optimization of process conditions using commercial levulinic acid and extension to the use of levulinic acid derived from depithed sugarcane bagasse. Biomass Conversion and Biorefinery. 13, 3113-3122. DOI: 10.1007/s13399-021-01632-5
  33. Silva, M.J.d., Rodrigues, A.A., Taba, W.K. (2024). Metal-Exchanged Phosphomolybdic Acid Salts-Catalyzed Esterification of Levulinic Acid. Processes. 12, 2574. DOI: 10.3390/pr12112574
  34. Pastore, C., D’Ambrosio, V. (2021). Intensification of processes for the production of ethyl levulinate using AlCl3.6H2O. Energies. 14, 1273. DOI: 10.3390/en14051273

Last update:

No citation recorded.

Last update:

No citation recorded.