skip to main content

Optimization and Kinetics of Terbium Leaching from Lapindo Mud using Sulfuric Acid as the Leaching Agent

1Research Center for Mining Technology, National Research and Innovation Agency, Co-Working Space Babarsari, Yogyakarta 55281, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta 55284, Indonesia

3Department of Mineral-Chemical Engineering, Politeknik ATI Makassar, Jl. Sunu No.220, Kota Makassar, 90211, Indonesia

Received: 14 Nov 2024; Revised: 30 Dec 2024; Accepted: 31 Dec 2024; Available online: 4 Jan 2024; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study investigated the impact of solid/liquid ratio, solvent concentration, temperature, and leaching time on the recovery of rare earth elements (REEs), particularly terbium, from Lapindo mud using sulfuric acid as a leaching agent. The objective was to optimize the leaching conditions and identify the most appropriate kinetic model for describing the extraction process. Leaching experiments were conducted under various solid/liquid ratios, sulfuric acid concentrations, temperatures, and time. The findings revealed that the maximum terbium recovery of 94.51% was achieved at a solid/liquid ratio of 0.5, and 18 M sulfuric acid was used as the leaching agent for the extraction process at 200 °C for 30 minutes. Kinetic analysis proved that the Zhuravlev-Leshokin-Templeman (ZLT) model best described the leaching process. The calculated reaction's apparent activation energy (Ea) was 27.96 kJ/mol, indicating that a combination of chemical reactions and diffusion mechanisms controls the leaching process. These insights are crucial for optimizing the extraction of terbium and other REEs from Lapindo mud, offering significant potential for industrial applications in recovering valuable materials from waste sources. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Kinetics; Lapindo mud; Leaching; Rare earth elements; Terbium

Article Metrics:

  1. Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285–1303. DOI: 10.1016/j.gsf.2018.12.005
  2. Filho, W.L. (2015). An Analysis of the Environmental Impacts of the Exploitation of Rare Earth Metals. In: Rare Earths Industry: Technological, Economic, and Environmental Implications. Elsevier, pp 269–277
  3. Mupatsi, N.M., Gwenzi, W. (2022). High-technology rare earth elements in the soil-plant system: Occurrence, behavior, and fate. In: Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum: Occurrence, Health Risks and Mitigation. Elsevier, pp 29–46
  4. Trisnawati, I., Yulandra, A., Prameswara, G., Pusparini, W.R., Mulyono, P., Prasetya, A., Petrus, H.T.B.M. (2021). Optimization of Multistage Precipitation Processes for Rare Earth Element Purification from Indonesian Zircon Tailings. Journal of Sustainable Metallurgy, 7, 537–546. DOI: 10.1007/s40831-021-00353-3
  5. Prameswara, G., Trisnawati, I., Poernomo, H., Mulyono, P., Prasetya, A., Petrus, H.T.B.M. (2020). Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings. Mining, Metallurgy and Exploration, 37, 1297–1305. DOI: 10.1007/s42461-020-00220-x
  6. Fujita, Y., McCall, S.K., Ginosar, D. (2022). Recycling rare earths: Perspectives and recent advances. MRS Bulletin, 47, 283–288. DOI: 10.1557/s43577-022-00301-w
  7. Traore, M., He, Y., Wang, Y., Gong, A., Qiu, L., Bai, Y., Liu, Y., Zhang, M., Chen, Y., Huang, X. (2023). Research progress on the content and distribution of rare earth elements in rivers and lakes in China. Marine Pollution Bulletin 191:114916. DOI: 10.1016/j.marpolbul.2023.114916
  8. Thoburn, W.C., Legvold, S., Spedding, F.H. (1958). Magnetic properties of terbium metal. Physical Review, 112, 56–58. DOI: 10.1103/PhysRev.112.56
  9. Müller, C., Domnanich, K.A., Umbricht, C.A., Van Der Meulen, N.P. (2018). Scandium and terbium radionuclides for radiotheranostics: Current state of development towards clinical application. British Journal of Radiology, 91. DOI: 10.1259/bjr.20180074
  10. Wakefield, G., Keron, H.A., Dobson, P.J., Hutchison, J.L. (1999). Structural and optical properties of terbium oxide nanoparticles. Journal of Physics and Chemistry of Solids 60:503–508. DOI: 10.1016/S0022-3697(98)00307-2
  11. Rice, N.T., Popov, I.A., Russo, D.R., Bacsa, J., Batista, E.R., Yang, P., Telser, J., La Pierre, H.S. (2019). Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex. Journal of the American Chemical Society, 141, 13222–13233. DOI: 10.1021/jacs.9b06622
  12. Wilder, L.P. (2014). Gadolinium and terbium: Chemical and optical properties, sources and applications. Nova Science Pub. Inc., City: New York, ISBN: 978-1631179068, Page: 155-160
  13. Lee, I.S., Kim, J.G. (2014). Industrial demand and integrated material flow of terbium in Korea. International Journal of Precision Engineering and Manufacturing - Green Technology, 1, 145–152. DOI: 10.1007/s40684-014-0019-y
  14. Liu, Z., Xu, X., Jiang, Y., Guo, Y. (2024). Research Progress of Terbium-doped Fluoride Crystal Visible Light Laser. Faguang Xuebao/Chinese Journal of Luminescence, 45, 1871–1882. DOI: 10.37188/CJL.20240206
  15. Rothhardt, C., Rekas, M., Kalkowski, G., Eberhardt, R., Tünnermann, A. (2012). New approach to fabrication of a Faraday isolator for high power laser applications. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
  16. Patil, A.B., Tarik, M., Struis, R.P.W.J., Ludwig, C. (2021). Exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare earth metals. Resour. Conserv. Recycl. 164, . DOI: 10.1016/j.resconrec.2020.105153
  17. Tan, Q., Deng, C., Li, J. (2017). Effects of mechanical activation on the kinetics of terbium leaching from waste phosphors using hydrochloric acid. Journal of Rare Earths, 35, 398–405. DOI: 10.1016/S1002-0721(17)60925-6
  18. Ippolito, N.M., Amato, A., Innocenzi, V., Ferella, F., Zueva, S., Beolchini, F., Vegliò, F. (2022). Integrating life cycle assessment and life cycle costing of fluorescent spent lamps recycling by hydrometallurgical processes aimed at the rare earths recovery. J. Environ. Chem. Eng. 10. DOI: 10.1016/j.jece.2021.107064
  19. Trisnawati, I., Prameswara, G., Mulyono, P., Prasetya, A., Bayu Murti Petrus’, H.T. (2020). Sulfuric Acid Leaching of Heavy Rare Earth Elements (HREEs) from Indonesian Zircon Tailing. International Journal of Technology, 11, 804–816. DOI: 10.14716/ijtech.v11i4.4037
  20. Prameswara, G., Trisnawati, I., Handini, T., Poernomo, H., Mulyono, P., Prasetya, A., Petrus, H.T.M.B. (2023). Recovery of Critical Elements (Dysprosium and Ytterbium) from Alkaline Process of Indonesian Zircon Tailings: Selective Leaching and Kinetics Study. International Journal of Technology, 14, 770–779. DOI: 10.14716/ijtech.v14i4.4960
  21. Ochsenkühn-Petropulu, M., Lyberopulu, T., Ochsenkühn, K.M., Parissakis, G. (1996). Recovery of lanthanides and yttrium from red mud by selective leaching. Analytica Chimica Acta, 319, 249–254. DOI: 10.1016/0003-2670(95)00486-6
  22. Jyothi, R.K., Thenepalli, T., Ahn, J.W., Parhi, P.K., Chung, K.W., Lee, J.Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 267, 122048. DOI: 10.1016/j.jclepro.2020.122048
  23. Gaustad, G., Williams, E., Leader, A. (2021). Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling, 167, 105213. DOI: 10.1016/j.resconrec.2020.105213
  24. A’yuni, Q., Rahmayanti, A., Hartati, H., Purkan, P., Subagyo, R., Rohmah, N., Itsnaini, L.R., Fitri, M.A. (2023). Synthesis and characterization of silica gel from Lapindo volcanic mud with ethanol as a cosolvent for desiccant applications. RSC Advances, 13, 2692–2699. DOI: 10.1039/d2ra07891k
  25. Sari, N.A., Warmada, I.W., Anggara, F. (2021). The potential of lithium enrichment in Lapindo Brantas, Mount Anyar, and Buncitan Mud Volcanoes, Sidoarjo District, East Java Province. IOP Conference Series: Earth and Environmental Science, 851, 12040. DOI: 10.1088/1755-1315/851/1/012040
  26. Watts, H., Fisher, T. (2021). Leaching the unleachable mineral: Rare earth dissolution from monazite ore in condensed phosphoric acid. Minerals, 11, 931. DOI: 10.3390/min11090931
  27. Demol, J., Ho, E., Senanayake, G. (2018). Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 °C. Hydrometallurgy, 179, 254–267. DOI: 10.1016/j.hydromet.2018.06.002
  28. Franus, W., Wiatros-Motyka, M.M., Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464–9474. DOI: 10.1007/s11356-015-4111-9
  29. Prameswara, G., Amin, I., Ulfah, A.N., Trisnawati, I., Petrus, H.T.B.M., Puspita, F. (2024). Atmospheric Leaching Behavior and Kinetics Study of Roasted Laterite Ore. Min. Metall. Explor., 41, 1025–1033. DOI: 10.1007/s42461-024-00947-x
  30. Genck, W.J. (2008). Liquid-solid operations and equipment. McGraw-Hill, New York. DOI: 10.1108/09504120810855075
  31. Wang, Y., Wu, Y., Fan, Y., Wang, Y., Li, L. (2024). Leaching Kinetics of Limonite-Type Laterite Nickel Ore from Ammonium Hydrogen Sulfate Solution at Atmospheric Pressure. Jom. 76, 11, 6363-6375. DOI: 10.1007/s11837-024-06470-0
  32. Prameswara, G., Trisnawati, I., Mulyono, P., Prasetya, A., Petrus, H.T.B.M. (2021). Leaching Behaviour and Kinetic of Light and Heavy Rare Earth Elements (REE) from Zircon Tailings in Indonesia. Jom 73, 988–998. DOI: 10.1007/s11837-021-04584-3
  33. Sililo, B. (2016). Modelling uranium leaching kinetics. Department of Material Science and Metallurgical Engineering, Faculty of Engineering, University of Pretoria, South Africa

Last update:

No citation recorded.

Last update:

No citation recorded.