skip to main content

Biosynthesis of Gold Nanoparticles using Amomum subulatum and Their Catalytic Properties

School of Engineering & Technology, Sushant University, Sector-55, Gurugram-122003-Haryana, India

Received: 15 Oct 2024; Revised: 27 Dec 2024; Accepted: 28 Dec 2024; Available online: 31 Dec 2024; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Recent studies reveal that gold nanoparticles possess unique and promising applications, such as targeted drug delivery, cancer therapy, and environmental uses like water purification and pollutant detection. Thus, developing AuNPs through simple, eco-friendly, and cost-effective methods is crucial compared to traditional chemical synthesis. In this study, we employed a one-step method to prepare gold nanoparticles using seed extract from black cardamom. The nanoparticles were synthesized by mixing the seed extract and gold(III) chloride trihydrate in an aqueous solution on a magnetic stirrer at room temperature, with the seed extract acting as both a reducing and capping agent. The resulting wine-red colloidal AuNPs were characterized by UV-visible spectroscopy, showing a surface plasmon resonance band at 530.5 nm, indicating successful formation and stability of the nanoparticles over 2 months. the AuNPs had sizes ranging from 20 to 60 nm as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies and were predominantly spherical in shape with few being triangular. Fourier transform infrared spectroscopy (FTIR) detected the presence of functional groups on the biosynthesized AuNPs before and after reduction. A time-dependent comparative analysis of their catalytic activity demonstrated their effectiveness in degrading 4-nitro phenol and organic dyes like methylene blue, and methyl orange, achieving a degradation efficiency of 91%. Kinetic studies indicated that the reaction followed pseudo first-order kinetics. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Gold nanoparticles; Catalytic activity; Green Synthesis; Black cardamom; p-nitrophenol

Article Metrics:

  1. Ullah, I., Rauf, A., Khalil, A.A., Luqman, M., Islam, M.R., Hemeg, H.A., Ahmad, Z., Al-Awthan, Y.S., Bahattab, O., Quradha, M.M. (2024). Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Sci. Nutr. 1–14. DOI: 10.1002/fsn3.4112
  2. K.M. Sowmya, N.R.T. (2022).Exploring the in-vitro pharmacological characteristics of Gold nanoparticles derived from elettaria cardamomum seed and pod: a comparative study. Nanotechnol. Reports. 17, 67–92
  3. Milanezi, F.G., Meireles, L.M., de Christo Scherer, M.M., de Oliveira, J.P., da Silva, A.R., de Araujo, M.L., Endringer, D.C., Fronza, M., Guimarães, M.C.C., Scherer, R. (2019).Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm. J. 27, 968–974. DOI: 10.1016/j.jsps.2019.07.005
  4. Muniyappan, N., Pandeeswaran, M., Amalraj, A. (2021). Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti- inflammatory activities. Environ. Chem. Ecotoxicol. 3, 117–124. DOI: 10.1016/j.enceco.2021.01.002
  5. Dhir, S., Dutt, R., Singh, R.P., Chauhan, M., Virmani, T., Kumar, G., Alhalmi, A., Aleissa, M., Rudayni, H., Al-Zahrani, M. (2023). Amomum subulatum Fruit Extract Mediated Green Synthesis of Silver and Copper Oxide Nanoparticles: Synthesis, Characterization, Antibacterial and Anticancer Activities. Processes. 11, 2698. DOI: 10.3390/pr11092698
  6. Nobahar, A., Lourenço, J.P., Costa, M.C., Carlier, J.D. (2024). Printed Circuit Boards Leaching Followed by Synthesis of Gold Nanoparticle Clusters Using Plant Extracts. Waste and Biomass Valorization. 15, 1999–2017. DOI: 10.1007/s12649-023-02272-8
  7. Shaabani, E., Amini, S.M., Kharrazi, S., Tajerian, R. (2017). Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed. J. 4, 115–125. DOI: 10.22038/nmj.2017.21506.1227
  8. Bouttier-Figueroa, D.C., Loreto-Romero, M.A., Roldan, M.A., González-Gutiérrez, F.H., Cortez-Valadez, M., Flores-Acosta, M., Robles-Zepeda, R.E. (2024) Green synthesis of gold nanoparticles via Moringa oleifera seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer. J. Environ. Sci. Heal. Part A. 59, 231–240. DOI: 10.1080/10934529.2024.2366736
  9. Donga, S., Bhadu, G.R., Chanda, S. (2020). Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artif. Cells, Nanomedicine Biotechnol. 48, 1315–1325. DOI: 10.1080/21691401.2020.1843470
  10. Umamaheswari, C., Lakshmanan, A., Nagarajan, N.S. (2018). Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J. Photochem. Photobiol. B Biol. 178, 33–39. DOI: 10.1016/j.jphotobiol.2017.10.017
  11. Elizarova, T.N., Antopolsky, M.L., Novichikhin, D.O., Skirda, A.M., Orlov, A. V., Bragina, V.A., Nikitin, P.I. (2023). A Straightforward Method for the Development of Positively Charged Gold Nanoparticle-Based Vectors for Effective siRNA Delivery. Molecules. 28,. DOI: 10.3390/molecules28083318
  12. Shao, Y., Xu, W., Zheng, Y., Zhu, Z., Xie, J., Wei, X., Zhang, Y., Zhang, J., Wu, Q., Wang, J., Ding, Y. (2023). Interface coordination achieving excellent optical properties of three-dimensional dendritic gold nanoparticles for immunochromatographic performance. Chem. Eng. J. 455, 140586. DOI: 10.1016/j.cej.2022.140586
  13. Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimensional Syst. Nanostructures. 42, 1417–1424. DOI: 10.1016/j.physe.2009.11.081
  14. Rajan, A., Vilas, V., Philip, D. (2015). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J. Mol. Liq. 212, 331–339. DOI: 10.1016/j.molliq.2015.09.013
  15. Al-Radadi, N.S., Al-Bishri, W.M., Salem, N.A., ElShebiney, S.A. (2024). Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm. J. 32, 101921. DOI: 10.1016/j.jsps.2023.101921
  16. Shankar, S.S., Rai, A., Ahmad, A., Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–502. DOI: 10.1016/j.jcis.2004.03.003
  17. Morrow, G.L. (2022). Applications of Gold Nanoparticles. 1st Edition. New York: Nova Science Publisher
  18. Ismail, M., Xiangke, W., Khan, A.A., Khan, Q. (2023). Amomum subalatum leaf extract derived silver nanoparticles for eco-friendly spectrophotometric detection of Hg (II) ions in water. Chem. Phys. Impact. 6, 100148. DOI: 10.1016/j.chphi.2022.100148
  19. Mohammed, A.B.A., Mohamed, A., El-Naggar, N.E.A., Mahrous, H., Nasr, G.M., Abdella, A., Ahmed, R.H., Irmak, S., Elsayed, M.S.A., Selim, S., Elkelish, A., Alkhalifah, D.H.M., Hozzein, W.N., Ali, A.S. (2022). Antioxidant and Antibacterial Activities of Silver Nanoparticles Biosynthesized by Moringa oleifera through Response Surface Methodology. J. Nanomater. 2022,. DOI: 10.1155/2022/9984308
  20. Perni, S., Piccirillo, C., Pratten, J., Prokopovich, P., Chrzanowski, W., Parkin, I.P., Wilson, M. (2009). The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials. 30, 89–93. DOI: 10.1016/j.biomaterials.2008.09.020
  21. Shah, A.A., Jayalakshmi, D., Xavier, B. (2021). Characterization of gold nanoparticles synthesized from Solanum torvum (Turkey Berry) fruit extract and its application in catalytic degradation of methylene blue and antibacterial properties. Mater. Today Proc. 47, 927–932. DOI: 10.1016/j.matpr.2021.04.606
  22. Sharifi-Rad, M., Pohl, P., Epifano, F., Álvarez-Suarez, J.M. (2020). Green synthesis of silver nanoparticles using astragalus tribuloides delile. Root extract: Characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials. 10, 1–17. DOI: 10.3390/nano10122383
  23. Alduraihem, N.S., Bhat, R.S., Al-Zahrani, S.A., Elnagar, D.M., Alobaid, H.M., Daghestani, M.H. (2023). Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of Acacia nilotica. Processes. 11, 1–16. DOI: 10.3390/pr11020301
  24. Koryagin, A.S., Mochalova, A.E., Salomatina, E. V., Eshkova, O.Y., Smirnova, L.A. (2013). Adaptogenic effects of chitosan-gold nanocomposites under simulated hypoxic conditions. Inorg. Mater. Appl. Res. 4, 127–130. DOI: 10.1134/S2075113313020081
  25. Aftab, R. A., Zaidi, S., Danish, M., Danish, M., Ansari, K. B., Rao, R. A. K., & Qyyum, M.A. (2023). Herbal medicinal waste black cardamom (Amomum subulatum) as a novel adsorbent for removing Cd(II) from water. Int. J. Environ. Sci. Technol. 1–20. DOI: 10.1007/s13762-023-04996-5
  26. Ahmad Aftab, R., Zaidi, S., Aslam Parwaz Khan, A., Arish Usman, M., Khan, A.Y., Tariq Saeed Chani, M., Asiri, A.M. (2023). Removal of congo red from water by adsorption onto activated carbon derived from waste black cardamom peels and machine learning modeling. Alexandria Eng. J. 71, 355–369. DOI: 10.1016/j.aej.2023.03.055
  27. Shabestarian, H., Homayouni-Tabrizi, M., Soltani, M., Namvar, F., Azizi, S., Mohamad, R., Shabestarian, H. (2017). Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Mater. Res. 20, 264–270. DOI: 10.1590/1980-5373-MR-2015-0694
  28. Singh, A.K., Tripathi, M., Srivastava, O.N., Verma, R.K. (2017). Silver Nanoparticles/Gelatin Composite: A New Class of Antibacterial Material. ChemistrySelect. 2, 7233–7238. DOI: 10.1002/slct.201701245
  29. Sharada S, O. V. (2015). Green Synthesis and Characterization of Silver Nanoparticles and Evaluation of their Antibacterial Activity using Elettaria Cardamom Seeds. J. Nanomed. Nanotechnol. 06, 2–5. DOI: 10.4172/2157-7439.1000266
  30. Singh, A.K., Srivastava, O.N. (2015). One-Step Green Synthesis of Gold Nanoparticles Using Black Cardamom and Effect of pH on Its Synthesis. Nanoscale Res. Lett. 10, 1–12. DOI: 10.1186/s11671-015-1055-4
  31. Noah, N. (2019). Green synthesis: Characterization and application of silver and gold nanoparticles. In: Green Synthesis, Characterization and Applications of Nanoparticles. pp. 111–135. Elsevier (2019)
  32. Wang, J., Li, Y., Lu, Q., Hu, Q., Liu, P., Yang, Y., Li, G., Xie, H., Tang, H. (2021). Drying temperature affects essential oil yield and composition of black cardamom (Amomum tsao-ko). Ind. Crops Prod. 168,. DOI: 10.1016/j.indcrop.2021.113580
  33. Küp, F.Ö., Çoşkunçay, S., Duman, F. (2020). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Mater. Sci. Eng. C. 107, 110207. DOI: 10.1016/j.msec.2019.110207
  34. Dauthal, P., Mukhopadhyay, M. (2012). Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind. Eng. Chem. Res. 51, 13014–13020. DOI: 10.1021/ie300369g
  35. Das, J., Velusamy, P. (2014). Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng. 45, 2280–2285. DOI: 10.1016/j.jtice.2014.04.005
  36. Edison, T.J.I., Sethuraman, M.G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357. DOI: 10.1016/j.procbio.2012.04.025
  37. Singh, I., Gupta, S., Gautam, H.K., Dhawan, G., Kumar, P. (2021). Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods. Chem. Pap. 75, 979–991. DOI: 10.1007/s11696-020-01355-3
  38. Joseph, S., Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq. 204, 184–191. DOI: 10.1016/j.molliq.2015.01.027
  39. Moores, A., Goettmann, F.: (2006).The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 30, 1121–1132. DOI: 10.1039/B604038C
  40. Boruah, J.S., Devi, C., Hazarika, U., Bhaskar Reddy, P.V., Chowdhury, D., Barthakur, M., Kalita, P. (2021). Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Adv. 11, 28029–28041. DOI: 10.1039/D1RA02669K
  41. Jalab, J., Abdelwahed, W., Kitaz, A., Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon. 7, e08033. DOI: 10.1016/j.heliyon.2021.e08033
  42. Rezazadeh, N.H., Buazar, F., Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci. Rep. 10, 1–13. DOI: 10.1038/s41598-020-76726-7
  43. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M.R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10, 1–17. DOI: 10.3390/pharmaceutics10020057
  44. Ebnesajjad, S. (2010). Handbook of adhesives and surface preparation. 1st Edition. William Andrew Publishing
  45. Mishra, A.K., Tiwari, K.N., Saini, R., Kumar, P., Mishra, S.K., Yadav, V.B., Nath, G. (2020). Green Synthesis of Silver Nanoparticles from Leaf Extract of Nyctanthes arbor-tristis L. and Assessment of Its Antioxidant, Antimicrobial Response. J. Inorg. Organomet. Polym. Mater. 30, 2266–2278. DOI: 10.1007/s10904-019-01392-w
  46. Rauf, M.A., Meetani, M.A., Khaleel, A., Ahmed, A. (2010). Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157, 373–378. DOI: 10.1016/j.cej.2009.11.017
  47. Flores, N.M., Pal, U., Galeazzi, R., Sandoval, A. (2014). Effects of morphology{,} surface area{,} and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 4, 41099–41110. DOI: 10.1039/C4RA04522J

Last update:

No citation recorded.

Last update:

No citation recorded.