skip to main content

Areca Catechu Biochar and Nano-Biochar as Adsorbents for Congo Red: Synthesis, Characterization, and Performance Evaluation

1Master of Materials Science, Graduate Program, Sriwijaya University, Palembang, 30139, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30662, Indonesia

3National Research and Innovation Agency (BRIN), PUSPIPTEK, Tangerang Selatan, 15311, Indonesia

Received: 24 Dec 2024; Revised: 7 Feb 2025; Accepted: 10 Feb 2025; Available online: 19 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
graphical abstract
Abstract

The presence of hazardous synthetic dyes such as Congo Red in industrial wastewater poses a significant environmental threat. This study explores the potential of biochar (BC) and nano-biochar (nano-BC), derived from Areca catechu husk as sustainable adsorbents for dye removal. Nano-BC was synthesised via hydrothermal carbonisation and mechanical ball milling, leading to enhanced structural and surface properties. X-ray Diffraction (XRD) revealed that the Pinang husk is predominantly amorphous, while BC exhibits increased crystallinity with sharp peaks, and nano-BC demonstrates the highest crystallinity and nanostructural refinement. Fourier Transform Infra Red (FTIR) confirmed the transformation of aliphatic-rich raw biomass into aromatic-dominant structures in BC and nano-BC, with nano-BC showing more pronounced graphite-like features. Scanning Electron Microscope (SEM) illustrated the morphological evolution, with nano-BC exhibiting refined, uniformly porous structures. BET analysis revealed that nano-BC has a significantly higher surface area 41.38 m²/g and smaller pore size 8.4928 nm compared to BC 22.38 m²/g and 15.39 nm, enhancing adsorption capacity. Furthermore, the adsorption kinetics followed the pseudo-second-order model, and isothermal analysis confirmed monolayer adsorption with the highest maximum adsorption capacity (Qmax = 154.526 mg/g). These findings highlight the superior adsorption performance of nano-BC, emphasising its potential for environmentally friendly water treatment applications. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Nano-biochar; Congo red; Adsorption, Wastewater Treatment
Funding: Univeristas Sriwijaya under contract SATEKS Unsri grant, number 0012/UN9/SK.LP2M.PT/2024

Article Metrics:

  1. Gamboa, D.M.P., Abatal, M., Lima, E., Franseschi, F.A., Ucán, C.A., Tariq, R., Elías, M.A.R., Vargas, J. (2024). Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. International Journal of Molecular Sciences, 25(9), 4771. DOI: 10.3390/ijms25094771
  2. Lu, X., Jordan, B., Berge, N.D. (2012). Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques. Waste Management, 32(7), 1353–1365. DOI: 10.1016/j.wasman.2012.02.012
  3. Khan, A.A., Naqvi, S.R., Ali, I., Farooq, W., Anjum, M.W., AlMohamadi, H., Lam, S.S., Verma, M., Ng, H.S., Liew, R.K. (2023). Algal biochar: A natural solution for the removal of Congo red dye from textile wastewater. Journal of the Taiwan Institute of Chemical Engineers, 105312. DOI: 10.1016/j.jtice.2023.105312
  4. Waly, S.M., El-Wakil, A.M., Abou El-Maaty, W.M., Awad, F.S. (2024). Hydrothermal synthesis of Mg/Al-layered double hydroxide modified water hyacinth hydrochar for remediation of wastewater containing mordant brown dye. RSC Advances, 14(22), 15281–15292. DOI: 10.1039/D4RA02624A
  5. Naseem, K., Farooqi, Z.H., Begum, R., Irfan, A. (2018). Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. Journal of Cleaner Production, 187, 296–307. DOI: 10.1016/j.jclepro.2018.03.209
  6. Wang, Z., Tang, Z., Xie, X., Xi, M., Zhao, J. (2022). Salt template synthesis of hierarchical porous carbon adsorbents for Congo red removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129278. DOI: 10.1016/j.colsurfa.2022.129278
  7. Harja, M., Buema, G., Bucur, D. (2022). Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Scientific Reports, 12(1), 6087. DOI: 10.1038/s41598-022-10093-3
  8. Hua, Z., Pan, Y., Hong, Q. (2023). Adsorption of Congo red dye in water by orange peel biochar modified with CTAB. RSC Advances, 13(18), 12502–12508. DOI: 10.1039/D3RA01444D
  9. Pi, Y., Duan, C., Zhou, Y., Sun, S., Yin, Z., Zhang, H., Liu, C., Zhao, Y. (2022). The effective removal of Congo Red using a bio-nanocluster: Fe3O4 nanoclusters modified bacteria. Journal of Hazardous Materials, 424, 127577. DOI: 10.1016/j.jhazmat.2021.127577
  10. Li, Y., Meas, A., Shan, S., Yang, R., Gai, X. (2016). Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresource Technology, 207, 379–386. DOI: 10.1016/j.biortech.2016.02.012
  11. Swan, N.B., Zaini, M.A.A. (2019). Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009
  12. Swan, N.B., Zaini, M.A.A. (2019). Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecological Chemistry and Engineering S, 26(1), 119–132. DOI: 10.1515/eces-2019-0009
  13. Siregar, P.M.S.B.N., Palapa, N.R., Wijaya, A., Fitri, E.S., Lesbani, A. (2021). Structural Stability of Ni/Al Layered Double Hydroxide Supported on Graphite and Biochar Toward Adorption of Congo Red. Science and Technology Indonesia, 6 (2), 85–95. DOI: 10.26554/sti.2021.6.2.85-95
  14. Mahmoud, A.E.D., Ali, R., Fawzy, M. (2024). Insights into levofloxacin adsorption with machine learning models using nano-composite hydrochars. Chemosphere, 355, 141746. DOI: 10.1016/j.chemosphere.2024.141746
  15. Chao, F.-L., Yang, T.-H., Wu, J.-Y. (2020). New uses for Areca Catechu tree. International Wood Products Journal, 11(2), 94–100. DOI: 10.1080/20426445.2020.1732525
  16. Bardalai, M., Mahanta, D.K. (2018). Characterisation of Biochar Produced by Pyrolysis from Areca Catechu Dust. Materials Today: Proceedings, 5(1), Part 2, 2089-2097. DOI: 10.1016/j.matpr.2017.09.205
  17. Peng, W., Liu, Y.-J., Wu, N., Sun, T., He, X.-Y., Gao, Y.-X., Wu, C.-J. (2015). Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology, Journal of Ethnopharmacology, 164, 340-356, DOI: 10.1016/j.jep.2015.02.010
  18. Bansal, M., Pal, B. (2025). Synergy of adsorption and visible light-induced photocatalytic degradation of doxycycline by cellulose modified Cu Al layered double hydroxide binary composite. International Journal of Biological Macromolecules, 285, 138329. DOI: 10.1016/j.ijbiomac.2024.138329
  19. Pandey, D., Daverey, A., Dutta, K., Arunachalam, K. (2022). Enhanced adsorption of Congo red dye onto polyethyleneimine-impregnated biochar derived from pine needles. Environmental Monitoring and Assessment, 194(12), 880. DOI: 10.1007/s10661-022-10563-1
  20. Laxmi Deepak Bhatlu, M., Athira, P.S., Jayan, N., Barik, D., Dennison, M.S. (2023). Preparation of Breadfruit Leaf Biochar for the Application of Congo Red Dye Removal from Aqueous Solution and Optimization of Factors by RSM-BBD. Adsorption Science & Technology, 2023, DOI: 10.1155/2023/7369027
  21. Vinayagam, R., Kandati, S., Murugesan, G., Goveas, L.C., Baliga, A., Pai, S., Varadavenkatesan, T., Kaviyarasu, K., Selvaraj, R. (2023). Bioinspiration synthesis of hydroxyapatite nanoparticles using eggshells as a calcium source: Evaluation of Congo red dye adsorption potential. Journal of Materials Research and Technology, 22, 169–180. DOI: 10.1016/j.jmrt.2022.11.093
  22. Belay, T., Worku, L.A., Bachheti, R.K., Bachheti, A., Husen, A. (2023). Nanomaterials: introduction, synthesis, characterization, and applications. In: Advances in Smart Nanomaterials and their Applications. Elsevier, pp. 1–21. DOI: 10.1016/B978-0-323-99546-7.00027-6
  23. Mathew Tharayil, J., Chinnaiyan, P. (2023). Sustainable waste valorisation: Novel Areca catechu L. husk biochar for anthraquinone dye adsorption - Characterization, modelling, kinetics, and isotherm studies. Results in Engineering, 20. DOI: 10.1016/j.rineng.2023.101624
  24. Chausali, N., Saxena, J., Prasad, R. (2021). Nanobiochar and biochar based nanocomposites: Advances and applications. Journal of Agriculture and Food Research, 5, 100191. DOI: 10.1016/j.jafr.2021.100191
  25. Ren, X., Chen, C., Nagatsu, M., Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170(2–3), 395–410. DOI: 10.1016/j.cej.2010.08.045
  26. Sudan, S., Kaushal, J., Khajuria, A. (2024). Efficient adsorption of anionic dye (congo red) using copper-carbon dots doped magnetic biochar: kinetic, isothermal, and regeneration studies. Clean Technologies and Environmental Policy, 26(2), 481–497. DOI: 10.1007/s10098-023-02621-0
  27. Wibiyan, S., Royani, I., Ahmad, N., Lesbani, A. (2024). Assessing the efficiency, selectivity, and reusability of ZnAl-layered double hydroxide and Eucheuma cottonii composite in removing anionic dyes from wastewater. Inorganic Chemistry Communications, 170, 113347. DOI: 10.1016/j.inoche.2024.113347
  28. Wijaya, A., Siregar, P.M.S.B.N., Priambodo, A., Palapa, N.R., Taher, T., Lesbani, A. (2021). Innovative Modified of Cu-Al/C (C = Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution. Science and Technology Indonesia, 6(4) DOI: 10.26554/sti.2021.6.4.228-234
  29. Normah, N., Juleanti, N., Siregar, P.M.S.B.N., Wijaya, A., Palapa, N.R., Taher, T., Lesbani, A. (2021). Size Selectivity of Anionic and Cationic Dyes Using LDH Modified Adsorbent with Low-Cost Rambutan Peel to Hydrochar. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 869–880. DOI: 10.9767/bcrec.16.4.12093.869-880
  30. Wibiyan, S., Royani, I., Ahmad, N., Lesbani, A. (2024). Assessing the efficiency, selectivity, and reusability of ZnAl-layered double hydroxide and Eucheuma cottonii composite in removing anionic dyes from wastewater. Inorganic Chemistry Communications, 170, 113347. DOI: 10.1016/j.inoche.2024.113347
  31. Sharma, P.K., Kumar, R., Singh, R.K., Sharma, P., Ghosh, A. (2022). Review on arsenic removal using biochar-based materials. Groundwater for Sustainable Development, 17, 100740. DOI: 10.1016/j.gsd.2022.100740
  32. Taher, T., Gusti Wibowo, Y., Maulana, S., Rahayu Palapa, N., Rianjanu, A., Lesbani, A. (2023). Facile synthesis of biochar/layered double oxides composite by one-step calcination for enhanced carbon dioxide (CO2) adsorption. Materials Letters, 338, 134068. DOI: 10.1016/j.matlet.2023.134068
  33. Wijitkosum, S. (2022). Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. International Soil and Water Conservation Research, 10(2), 335–341. DOI: 10.1016/j.iswcr.2021.09.006
  34. Zahara, Z.A., Royani, I., Palapa, N.R., Mohadi, R., Lesbani, A. (2023). Treatment of Methylene Blue Using Ni-Al/Magnetite Biochar Layered Double Hydroxides Composite by Adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 18(4), 659–674. DOI: 10.9767/bcrec.20049
  35. Cabral, L.L., Bottini, R.C.R., Gonçalves, A.J., Junior, M.M., Rizzo-Domingues, R.C.P., Lenzi, M.K., Nagalli, A., Passig, F.H., dos Santos, P.M., de Carvalho, K.Q. (2025). Food dye adsorption in single and ternary systems by the novel passion fruit peel biochar adsorbent. Food Chemistry, 464, 141592. DOI: 10.1016/j.foodchem.2024.141592
  36. Qiu, B., Shao, Q., Shi, J., Yang, C., Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 300, 121925, DOI: 10.1016/j.seppur.2022.121925
  37. Chaukura, N., Murimba, E.C., Gwenzi, W. (2017). Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Applied Water Science, 7(5), 2175–2186. DOI: 10.1007/s13201-016-0392-5
  38. Wibiyan, S., Royani, I., Ahmad, N., Lesbani, A. (2024). Assessing the efficiency, selectivity, and reusability of ZnAl-layered double hydroxide and Eucheuma cottonii composite in removing anionic dyes from wastewater. Inorganic Chemistry Communications, 170, 113347. DOI: 10.1016/j.inoche.2024.113347
  39. Abebe, B., Murthy, H.C.A., Amare, E. (2018). Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. Journal of Encapsulation and Adsorption Sciences, 08(04), 225–255. DOI: 10.4236/jeas.2018.84012
  40. Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X. (2015). Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 166–173. DOI: 10.1016/j.colsurfa.2014.11.021
  41. Rojas-Chávez, H., Juárez-García, J.M., Herrera-Rivera, R., Flores-Rojas, E., González-Domínguez, J.L., Cruz-Orea, A., Cayetano-Castro, N., Ávila-García, A., Mondragón-Sánchez, M.L. (2020). The high-energy milling process as a synergistic approach to minimize the thermal conductivity of PbTe nanostructures. Journal of Alloys and Compounds, 820, 153167. DOI: 10.1016/j.jallcom.2019.153167
  42. Algethami, J.S., Alhamami, M.A.M., Alqadami, A.A., Melhi, S., Seliem, A.F. (2024). Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: Modeling, adsorption behavior, and mechanism analysis. International Journal of Biological Macromolecules, 254, 127767. DOI: 10.1016/j.ijbiomac.2023.127767
  43. Wang, J., Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. DOI: 10.1016/j.chemosphere.2020.127279
  44. Tabassum, M., Bardhan, M., Novera, T.M., Islam, Md.A., Hadi Jawad, A., Islam, Md.A. (2020). NaOH-Activated Betel Nut Husk Hydrochar for Efficient Adsorption of Methylene Blue Dye. Water, Air, & Soil Pollution, 231(8), 398. DOI: 10.1007/s11270-020-04762-0
  45. Kumar, A., Saini, K., Bhaskar, T. (2020). Hydochar and biochar: Production, physicochemical properties and techno-economic analysis. Bioresour. Technol. 310, 123442, DOI: 10.1016/j.biortech.2020.123442
  46. Li, Y., Meas, A., Shan, S., Yang, R., Gai, X., Wang, H., Tsend, N. (2018). Characterization, isotherm and kinetic data for adsorption of Congo red and 2-naphthol on different bamboo hydrochars. Data in Brief, 19, 49–54. DOI: 10.1016/j.dib.2018.04.066
  47. Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X. (2015). Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 166–173. DOI: 10.1016/j.colsurfa.2014.11.021
  48. Bolbol, H., Fekri, M., Hejazi-Mehrizi, M. (2019). Layered double hydroxide–loaded biochar as a sorbent for the removal of aquatic phosphorus: behavior and mechanism insights. Arabian Journal of Geosciences, 12(16), 503. DOI: 10.1007/s12517-019-4694-4
  49. Zhang, D.L., Liu, Z.G., Koch, C.C. (2004). Applications of High Energy Mechanical Milling in Processing Advanced Materials: An Overview of the Understanding. Journal of Metastable and Nanocrystalline Materials, 20–21, 103–110. DOI: 10.4028/www.scientific.net/JMNM.20-21.103
  50. Saba, B., Christy, A.D., Shah, A. (2024). Hydrochar for pollution remediation: Effect of process parameters, adsorption modeling, life cycle assessment and techno-economic evaluation. Resources, Conservation and Recycling, 202, 107359. DOI: 10.1016/j.resconrec.2023.107359
  51. Bo, J., Shi, B. (2024). Performances of residues from hydrolyzed corn-cobs for the adsorption of Congo red. Industrial Crops and Products, 220, 119311. DOI: 10.1016/j.indcrop.2024.119311
  52. Haris, M., Khan, M.W., Paz-Ferreiro, J., Mahmood, N., Eshtiaghi, N. (2022). Synthesis of functional hydrochar from olive waste for simultaneous removal of azo and non-azo dyes from water. Chemical Engineering Journal Advances, 9, 100233. DOI: 10.1016/j.ceja.2021.100233
  53. Lin, Z., Wang, R., Tan, S., Zhang, K., Yin, Q., Zhao, Z., Gao, P. (2023). Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: Effect of nitrogen source in wastewater on the adsorption performance of hydrochar. Journal of Environmental Management, 334, 117503. DOI: 10.1016/j.jenvman.2023.117503
  54. Supraja, K.V., Doddapaneni, T.R.K.C., Ramasamy, P.K., Kaushal, P., Ahammad, Sk.Z., Pollmann, K., Jain, R. (2023). Critical review on production, characterization and applications of microalgal hydrochar: Insights on circular bioeconomy through hydrothermal carbonization. Chemical Engineering Journal, 473, 145059. DOI: 10.1016/j.cej.2023.145059
  55. Tu, W., Liu, Y., Xie, Z., Chen, M., Ma, L., Du, G., Zhu, M. (2021). A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. Journal of Colloid and Interface Science, 593, 390–407. DOI: 10.1016/j.jcis.2021.02.133
  56. Singh, D.K., Garg, A. (2024). Application of sewage sludge derived hydrochar as an adsorbent for removal of methylene blue. Sustainable Chemistry for the Environment, 8, 100158. DOI: 10.1016/j.scenv.2024.100158
  57. Liu, C., Balasubramanian, P., Li, F., Huang, H. (2024). Machine learning prediction of dye adsorption by hydrochar: Parameter optimization and experimental validation. Journal of Hazardous Materials, 480, 135853. DOI: 10.1016/j.jhazmat.2024.135853
  58. Jalilian, M., Bissessur, R., Ahmed, M., Hsiao, A., He, Q.S., Hu, Y. (2024). A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. Science of The Total Environment, 914, 169823. DOI: 10.1016/j.scitotenv.2023.169823
  59. Mahar, D., Semwal, N., Aneja, A., Arya, M.C. (2024). Rapid adsorptive removal of congo red using Cu/Fe/Al mixed metal oxides obtained from layered double hydroxide nanomaterial: Performance and optimization evaluation using BBD-RSM approach. Surfaces and Interfaces, 55, 105366. DOI: 10.1016/j.surfin.2024.105366
  60. Emmanuel, S.S., Adesibikan, A.A. (2024). Hydrothermal valorization of biomass waste into hydrochar towards circular economy and sustainable adsorptive dye contaminants clean-up: A review. Desalination and Water Treatment, 320, 100801. DOI: 10.1016/j.dwt.2024.100801
  61. Hammud, H.H., Hammoud, M.H., Hussein, A.A., Fawaz, Y.B., Abdul Hamid, M.H.S., Sheikh, N.S. (2023). Removal of Malachite Green Using Hydrochar from PALM Leaves. Sustainability, 15(11), 8939. DOI: 10.3390/su15118939
  62. Hasanah, M., Wijaya, A., Arsyad, F.S., Mohadi, R., Lesbani, A. (2022). Preparation of Hydrochar from Salacca zalacca Peels by Hydrothermal Carbonization: Study of Adsorption on Congo Red Dyes and Regeneration Ability. Science and Technology Indonesia, 7(3), 372–378. DOI: 10.26554/sti.2022.7.3.372-378
  63. Goyi, A.A., Sher Mohammad, N.M., Omer, K.M. (2024). Preparation and characterization of potato peel derived hydrochar and its application for removal of Congo red: a comparative study with potato peel powder. International Journal of Environmental Science and Technology, 21(1), 631–642. DOI: 10.1007/s13762-023-04965-y
  64. Lonappan, L., Rouissi, T., Das, R.K., Brar, S.K., Ramirez, A.A., Verma, M., Surampalli, R.Y., Valero, J.R. (2016). Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Management, 49, 537–544. DOI: 10.1016/j.wasman.2016.01.015
  65. Dai, Y., Zhang, N., Xing, C., Cui, Q., Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere, 223, 12–27. DOI: 10.1016/j.chemosphere.2019.01.161
  66. Rubangakene, N.O., Elwardany, A., Fujii, M., Sekiguchi, H., Elkady, M., Shokry, H. (2023). Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chemical Engineering Research and Design, 189, 636–651. DOI: 10.1016/j.cherd.2022.12.003
  67. Adawiyah, R., Yuliasari, N., Hanifah, Y., Alawiyah, K., Rahayu Palapa, N. (2024). Utilizing Areca catechu L. Fruit Peel-Derived Biochar and Hydrochar for Congo Red Adsorption: Kinetic and Thermodynamic Analysis. Indonesian Journal of Environmental Management and Sustainability, 8(4), 135–144. DOI: 10.26554/ijems.2024.8.4.135-144
  68. Xu, W., Cai, B., Zhang, X., Zhang, Y., Zhang, Y., Peng, H. (2024). The Biochar Derived from Pecan Shells for the Removal of Congo Red: The Effects of Temperature and Heating Rate. Molecules, 29(23), 5532. DOI: 10.3390/molecules29235532
  69. Guo, S., Dong, X., Wu, T., Shi, F., Zhu, C. (2015). Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. Journal of Analytical and Applied Pyrolysis, 116, 1–9. DOI: 10.1016/j.jaap.2015.10.015
  70. Faheem, Du, J., Bao, J., Hassan, M.A., Irshad, S., Talib, M.A. (2019). Multi-functional Biochar Novel Surface Chemistry for Efficient Capture of Anionic Congo Red Dye: Behavior and Mechanism. Arabian Journal for Science and Engineering, 44(12), 10127–10139. DOI: 10.1007/s13369-019-04194-x
  71. Li, H., Budarin, V.L., Clark, J.H., North, M., Wu, X. (2022). Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons®: Mechanism and porosity dependence. Journal of Hazardous Materials, 436, 129174. DOI: 10.1016/j.jhazmat.2022.129174
  72. Peng, W., Liu, Y.-J., Wu, N., Sun, T., He, X.-Y., Gao, Y.-X., Wu, C.-J. (2015). Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Ethnopharmacology, 164, 340–356. DOI: 10.1016/j.jep.2015.02.010
  73. Sabio, E., Álvarez-Murillo, A., Román, S., Ledesma, B. (2016). Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Management, 47, 122–132. DOI: 10.1016/j.wasman.2015.04.016

Last update:

No citation recorded.

Last update:

No citation recorded.