skip to main content

Performance Test of Various Indonesian Natural Zeolites as Composite Components of NiMo/Al2O3-Zeolite Catalysts for Hydrocracking Used Cooking Oil into Biohydrocarbons

1Department of Chemical Engineering, Universitas Indonesia, Depok City, West Java 16424, Indonesia

2Catalyst And Materials, Technology Innovation (TI), Direktorat SPPU, PT Pertamina (Persero), Jalan Raya Bekasi Km 20, Pulogadung, Jakarta, Indonesia

Received: 17 Nov 2024; Revised: 26 Feb 2025; Accepted: 27 Feb 2025; Available online: 3 Mar 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Due to increasing demand for alternative energy sources, nonedible used cooking oil is being converted into biohydrocarbons as an eco-friendly renewable option. This study explores the use of three Indonesian zeolites; Lampung, Bayah, and Tasikmalaya as a composite components of NiMo/Al2O3-Zeolite catalysts to enhance conversion and yields, promoting the use of sustainable domestic resources. The NiMo/γ-Al2O3-zeolite catalyst, with alumina-to-zeolite ratios of 75:25 and 25:75, effectively converted used cooking oil into biohydrocarbons products—green diesel and gasoline. The NiMo/γ-Al2O3 (75%)-Bayah Natural Zeolite (25%) catalyst exhibited a surface area of 194 m²/g, pore volume of 0.45 cm3/g, 7.01% Mo content, and a crystal size of 117.74 nm. At 370 °C, this catalyst achieved a 93% conversion, with GC-simdis analysis confirming 13% gasoline and 78% diesel fractions. This research demonstrates that Indonesian natural zeolites can be effectively used to convert used cooking oil into biohydrocarbons, achieving high conversion and desired product selectivity. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bio hydrocarbons; Clinoptilolite; Dealumination; Hydrocracking; Mordenite; Natural Zeolite
Funding: PT. Pertamina Technology Innovation

Article Metrics:

  1. Pavlović, S.M., Marinković, D.M., Kostić, M.D., Janković-Častvan, I.M., Mojović, L.V., Stanković, M.V., & Veljković, V.B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267, 117171. DOI: 10.1016/j.fuel.2020.117171
  2. Balwan, W.K., & Kour, S. (2021). A Systematic Review of Biofuels: The Cleaner Energy for Cleaner Environment. Indian Journal of Scientific Research, 12(1), 135. DOI: 10.32606/IJSR.V12.I1.00025
  3. Trisunaryanti, W., Triyono, T., Fallah, I.I., Salsiah, S., & Alisha, G.D. (2022). Highly Selective Bio-hydrocarbon Production using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 712–724. DOI: 10.9767/bcrec.17.4.15472.712-724
  4. Joshi, G., Pandey, J.K., Rana, S., & Rawat, D.S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79, 850–866. DOI: 10.1016/j.rser.2017.05.185
  5. Senthur, N.S., Imamulhasan, H., RamGanesh, H., & Shafquath Ibn Sulthan, S. (2020). Analysis of Green Fuel for Diesel Engine. IOP Conference Series: Materials Science and Engineering, 923(1), 012061. DOI: 10.1088/1757-899X/923/1/012061
  6. Foo, W.H., Chia, W.Y., Tang, D.Y.Y., Koay, S.S.N., Lim, S.S., & Chew, K.W. (2021). The conundrum of waste cooking oil: Transforming hazard into energy. Journal of Hazardous Materials, 417, 126129. DOI: 10.1016/j.jhazmat.2021.126129
  7. Wang, A., Wang, J., Lu, C., Xu, M., Lv, J., Wu, X.: Esterification for biofuel synthesis over an eco-friendly and efficient kaolinite-supported SO42−/ZnAl2O4 macroporous solid acid catalyst. Fuel. 234, 430–440 (2018). DOI: 10.1016/j.fuel.2018.07.041
  8. Wang, H., Yan, S., Salley, S.O., & Simon Ng, K.Y. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81–87. DOI: 10.1016/j.fuel.2013.04.066
  9. Ishihara, A., Fukui, N., Nasu, H., & Hashimoto, T. (2014). Hydrocracking of soybean oil using zeolite–alumina composite supported NiMo catalysts. Fuel, 134, 611–617. DOI: 10.1016/j.fuel.2014.06.004
  10. Aziz, I., Ardine, E.A.F., Saridewi, N., & Adhani, L. (2021). Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst. Jurnal Kimia Sains Dan Aplikasi, 24(7), 222–227. DOI: 10.14710/jksa.24.7.222-227
  11. Irawan, A., Bindar, Y., Kurniawan, T., Alwan, H., Rosid, R., & Fauziah, N.A. (2021). Bayah Natural Zeolites to Upgrade the Quality of Bio Crude Oil from Empty Fruit Bunch Pyrolysis. Journal of Engineering and Technological Sciences, 53(3), 210308. DOI: 10.5614/j.eng.technol.sci.2021.53.3.8
  12. Dinesha, P., Kumar, S., & Rosen, M.A. (2019). Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil. Renewable Energy, 136, 342–351. DOI: 10.1016/j.renene.2018.12.118
  13. Mahdi, H.I., Bazargan, A., McKay, G., Azelee, N. I.W., & Meili, L. (2021). Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 174, 158–187. DOI: 10.1016/j.cherd.2021.07.009
  14. Tuli, D., & Kasture, S. (2022). Biodiesel and green diesel. In Advanced Biofuel Technologies (pp. 119–133). Elsevier. DOI: 10.1016/B978-0-323-88427-3.00010-6
  15. Yulia, D., & Zulys, A. (2020). Hydroprocessing of kemiri sunan oil (reutealis trisperma (blanco) airy shaw) over NiMoCe/γ-Al2O3 catalyst to produce green diesel. IOP Conference Series: Materials Science and Engineering, 763(1), 012038. DOI: 10.1088/1757-899X/763/1/012038
  16. Scherzer, J., & Gruia, A. J. (1996). Hydrocracking Science and Technology (1st ed.). New York: Marcel Decker
  17. Król, M. (2020). Natural vs. Synthetic Zeolites. Crystals, 10(7), 622. DOI: 10.3390/cryst10070622
  18. Douaihy, R.Z., Lakiss, L., El-Roz, M., Levaque, Y., Vimont, A., & Bazin, P. (2023). Impact of the Si/Al ratio on the ethanol/water coadsorption on MFI zeolites revealed using original quantitative IR approaches. Physical Chemistry Chemical Physics, 25(16), 11555–11565. DOI: 10.1039/D3CP00549F
  19. Zhang, Y., Dong, J., Guo, F., Shao, Z., & Wu, J. (2018). Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water. Minerals, 8(3), 116. DOI: 10.3390/min8030116
  20. Brahimi, S., Boudjema, S., Rekkab, I., Choukchou-Braham, A., & Bachir, R. (2015). Synthesis and Catalytic Activity of Vanadia-Doped Iron-Pillared Clays forCyclohexene Epoxidation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6, 63–76
  21. Faghihian, H., Malekpour, A., & Maragheh, M.G. (2002). Adsorption of molybdate ion by natrolite and clinoptilolite-rich tuffs. International Journal of Environment and Pollution, 18(2), 181. DOI: 10.1504/IJEP.2002.000704
  22. Ibrahim, K., Khoury, H., & Tuffaha, R. (2016). Mo and Ni Removal from Drinking Water Using Zeolitic Tuff from Jordan. Minerals, 6(4), 116. DOI: 10.3390/min6040116
  23. Kang, H. (2021). Crystalline Silicon vs. Amorphous Silicon: the Significance of Structural Differences in Photovoltaic Applications. IOP Conference Series: Earth and Environmental Science, 726(1), 012001. DOI: 10.1088/1755-1315/726/1/012001
  24. Wang, W., Li, F., & Wang, H. (2021). Study of light wavelength on the oxidative stability of Jatropha biodiesel. Fuel, 292, 120230. DOI: 10.1016/j.fuel.2021.120230
  25. Dik, P.P., Golubev, I.S., Kazakov, M.O., Pereyma, V.Y., Smirnova, M.Y., Prosvirin, I.P., Gerasimov, E., Kondrashev, D., Golovachev, V., Kleimenov, A., Vedernikov, O., Klimov, O., Noskov, A.S. (2021). Influence of zeolite content in NiW/Y-ASA-Al2O3 catalyst for second stage hydrocracking. Catalysis Today, 377, 50–58. DOI: 10.1016/j.cattod.2020.10.024
  26. Razzaq, L., Farooq, M., Mujtaba, M.A., Sher, F., Farhan, M., Hassan, M.T., … Imran, M. (2020). Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment. Sustainability, 12(12), 5186. DOI: 10.3390/su12125186
  27. Huang, Y., Li, F., Bao, G., Li, M., & Wang, H. (2022). Qualitative and quantitative analysis of the influence of biodiesel fatty acid methyl esters on iodine value. Environmental Science and Pollution Research, 29(2), 2432–2447. DOI: 10.1007/s11356-021-15762-w

Last update:

No citation recorded.

Last update:

No citation recorded.