skip to main content

Effect of the Dimethylformamide/Isopropanol Solvent Ratio on the Structure, Optical Properties, and Photodegradation Performance of RhB Using Bi-MOF

1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam

2Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Viet Nam

3Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam

Received: 27 Jan 2025; Revised: 20 Feb 2025; Accepted: 21 Feb 2025; Available online: 25 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study investigated the structural characteristics, surface morphology, and photocatalytic activity of bismuth-based metal-organic frameworks (BiBTC-ISOx) synthesized with varying ratios of N, N-dimethylformamide (DMF) and isopropanol (ISO). X-ray diffraction confirmed the crystalline structure of the BiBTC-ISOx (x = 1, 3, 6) compounds, while FTIR spectroscopy verified the successful bonding between the ligand and the Bi3+ complex. UV-Vis spectroscopy revealed strong UV light absorption with tunable bandgaps ranging from 3.28 to 3.68 eV. Nitrogen adsorption/desorption analysis revealed a hierarchical micro/mesoporous structure, with BiBTC-ISO6 exhibiting the highest surface area (24.968 m2/g). SEM imaging revealed a rectangular rod-like morphology, which became more elongated with increasing ISO content. The photocatalytic activity of BiBTC-ISOx was evaluated based on the degradation of Rhodamine B (RhB) under visible light, with BiBTC-ISO6 demonstrating the highest efficiency. Optimal conditions for RhB degradation were determined to be 0.03 g catalyst mass, 10 ppm RhB concentration, and pH of 3. Mechanistic studies revealed that superoxide radicals are the primary active species in the photocatalytic process. The BiBTC-ISO6 catalyst exhibited excellent stability and reusability over three consecutive degradation cycles, highlighting its potential for practical applications in organic dye removal. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bi-MOFs; photodegradation; solvent; isopropanol; rhodamine B
Funding: Industrial University of Ho Chi Minh City

Article Metrics:

  1. Nguyen, S.N., Truong, T.K., You, S.J., Wang, Y.F., Cao, T.M., Pham, V. Van (2019). Investigation on Photocatalytic Removal of NO under Visible Light over Cr-Doped ZnO Nanoparticles. ACS Omega, 4(7), 12853–12859. DOI: 10.1021/acsomega.9b01628
  2. Van Pham, V., La, H.P.P., Le, T.Q., Nguyen, P.H., Van Le, T., Cao, T.M. (2023). Fe2O3/diatomite materials as efficient photo-Fenton catalysts for ciprofloxacin removal. Environmental Science and Pollution Research, 30(12), 33686–33694. DOI: 10.1007/s11356-022-24522-3
  3. Chen, X., Zhu, L., Ma, Z., Wang, M., Zhao, R., Zou, Y., Fan, Y. (2022). Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B. Nanomaterials, 12(14) DOI: 10.3390/nano12142394
  4. Abdel-Aziz, R., Ahmed, M.A., Abdel-Messih, M.F. (2020). A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 389, 112245. DOI: 10.1016/j.jphotochem.2019.112245
  5. Kadem, A.J., Tan, Z.M., Suntharam, N.M., Pung, S.Y., Ramakrishnan, S. (2023). Synthesis of CuO, ZnO and SnO2 Coupled TiO2 Photocatalyst Particles for Enhanced Photodegradation of Rhodamine B Dye. Bulletin of Chemical Reaction Engineering and Catalysis, 18(3) DOI: 10.9767/bcrec.19532
  6. Pham, V. Van, Truong, T.K., Hai, L.V., La, H.P.P., Nguyen, H.T., Lam, V.Q., Tong, H.D., Nguyen, T.Q., Sabbah, A., Chen, K.-H., You, S.-J., Cao, T.M. (2022). S-Scheme α-Fe 2 O 3 /g-C 3 N 4 Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation. ACS Applied Nano Materials, 5(3), 4506–4514. DOI: 10.1021/acsanm.2c00741
  7. Vo, N.T.T., You, S.-J., Pham, M.-T., Pham, V. Van (2023). A green synthesis approach of p-n CuO/ZnO junctions for multifunctional photocatalysis towards the degradation of contaminants. Environmental Technology & Innovation, 32, 103285. DOI: 10.1016/j.eti.2023.103285
  8. Gao, X., Huang, G., Gao, H., Pan, C., Wang, H., Yan, J., Liu, Y., Qiu, H., Ma, N., Gao, J. (2016). Facile fabrication of Bi2S3/SnS2 heterojunction photocatalysts with efficient photocatalytic activity under visible light. Journal of Alloys and Compounds, 674, 98–108. DOI: 10.1016/j.jallcom.2016.03.031
  9. Pham, H.A. Le, Vo, T.K., Nguyen, D.T., Huynh, H.K., Pham, Q.T.S., Nguyen, V.C. (2022). Facile synthesis of bismuth terephthalate metal–organic frameworks and their visible-light-driven photocatalytic activities toward Rhodamine B dye. Green Chemistry Letters and Reviews, 15(3), 572–581. DOI: 10.1080/17518253.2022.2117998
  10. Sellam, M., Azizi, S., Bouras, D., Fellah, M., Obrosov, A., El-Hiti, G.A. (2024). Degradation of rhodamine B dye under visible and solar light on zinc oxide and nickel-doped zinc oxide thin films. Optical Materials, 151, 115316. DOI: 10.1016/j.optmat.2024.115316
  11. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. DOI: https://doi.org/10.1016/j.jclepro.2020.121725
  12. Wang, Q., Gao, Q., Al-Enizi, A.M., Nafady, A., Ma, S. (2020). Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg Chem Front 7:300–339
  13. Nguyen, T.H.M., Nguyen, V.C., Nguyen, T.H.A. (2025). Photo-reduced synthesis of a Z-scheme Ag@Fe3O4/g-C3N4 composite for photoreduction of 4-nitrophenol and photocatalytic activity. Brazilian Journal of Chemical Engineering. https://doi.org/10.1007/s43153-025-00536-5
  14. Abdi, J., Banisharif, F., Khataee, A. (2021). Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst for removing organic contaminants. Journal of Molecular Liquids, 334, 116129. DOI: 10.1016/j.molliq.2021.116129
  15. Yu, F., Jin, M., Zhang, Y., Lei, C., Zhou, L., Zhu, H., Yu, B. (2022). Visible-Light-Driven Zr-MOF/BiOBr Heterojunction for the Efficient Synchronous Removal of Hexavalent Chromium and Rhodamine B from Wastewater. ACS Omega, 7(29), 25066–25077. DOI: 10.1021/acsomega.2c01298
  16. Qin, J., Pei, Y., Zheng, Y., Ye, D., Hu, Y. (2023). Fe-MOF derivative photocatalyst with advanced oxygen reduction capacity for indoor pollutants removal. Applied Catalysis B: Environmental, 325, 122346. DOI: 10.1016/j.apcatb.2022.122346
  17. Zaamouchi, I., Kaci, M.M., Zidane, Y., Belaid, S., Bouacida, S., Benmerad, B. (2024). The impressive photocatalytic performance of Zn-MOF as a novel photocatalyst for the effective purification of dyes under solar exposure. Journal of Molecular Structure, 1299, 137070. DOI: 10.1016/j.molstruc.2023.137070
  18. Wang, Q.-X., Li, G. (2021). Bi( iii ) MOFs: syntheses, structures and applications. Inorganic Chemistry Frontiers, 8(3), 572–589. DOI: 10.1039/D0QI01055C
  19. Gao, Y., Yi, X.-H., Wang, C.-C., Wang, F., Wang, P. (2023). Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst. Materials Research Bulletin, 158, 112072. DOI: 10.1016/j.materresbull.2022.112072
  20. Pham, H.A. Le, Abd, A.A., Nguyen, T.H.A., Le, N.B.T., Nguyen, T.D., Nguyen, V.C., Othman, M.R. (2023). Optimization of photocatalytic degradation performance of organic dye using highly efficient bismuth MOFs: Preparation and parametric analysis. Chemical Engineering Research and Design, 198, 196–207. DOI: 10.1016/j.cherd.2023.08.040
  21. Nguyen, V.H., Nguyen, T.D., Van Nguyen, T. (2020). Microwave-Assisted Solvothermal Synthesis and Photocatalytic Activity of Bismuth(III) Based Metal–Organic Framework. Topics in Catalysis, 63(11–14), 1109–1120. DOI: 10.1007/s11244-020-01271-6
  22. Nguyen, V.H., Pham, A.L.H., Nguyen, V.H., Lee, T., Nguyen, T.D. (2022). Facile synthesis of bismuth(III) based metal-organic framework with difference ligands using microwave irradiation method. Chemical Engineering Research and Design, 177(Iii), 321–330. DOI: 10.1016/j.cherd.2021.10.043
  23. Ye, F., Wei, Z.X., Song, J.F., Wu, X.H., Yue, P. (2017). Synthesis, Characterization, and Photocatalytic Properties of Bismuth (III)-benzene-1,3,5-tricarboxylate. Zeitschrift fur Anorganische und Allgemeine Chemie, 643(10), 669–674. DOI: 10.1002/zaac.201700096
  24. Dong, S., Wang, L., Lou, W., Shi, Y., Cao, Z., Zhang, Y., Sun, J. (2022). Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment. Ultrasonics Sonochemistry, 91, 106223. DOI: 10.1016/j.ultsonch.2022.106223
  25. Gao, Y., Yi, X.-H., Wang, C.-C., Wang, F., Wang, P. (2023). Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst. Materials Research Bulletin, 158, 112072. DOI: 10.1016/j.materresbull.2022.112072
  26. Zhang, B., Xu, H., Wang, M., Su, L., Zhang, S., Zhang, Y., Wang, Q. (2022). Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes. Journal of Environmental Chemical Engineering, 10(5), 108469. DOI: 10.1016/j.jece.2022.108469
  27. Łuczak, J., Kroczewska, M., Baluk, M., Sowik, J., Mazierski, P., Zaleska-Medynska, A. (2023). Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 314, 102864. DOI: https://doi.org/10.1016/j.cis.2023.102864
  28. Hwang, J., Yan, R., Oschatz, M., Schmidt, B.V.K.J. (2018). Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of Materials Chemistry A, 6(46), 23521–23530. DOI: 10.1039/C8TA07700B
  29. Zhang, B., Zhang, J., Liu, C., Sang, X., Peng, L., Ma, X., Wu, T., Han, B., Yang, G. (2015). Solvent determines the formation and properties of metal–organic frameworks. RSC Advances, 5(47), 37691–37696. DOI: 10.1039/C5RA02440D
  30. Akhundzadeh Tezerjani, A., Halladj, R., Askari, S. (2021). Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Advances, 11(32), 19914–19923. DOI: 10.1039/D1RA02856A
  31. Pham, H.A. Le, Nguyen, V.H., Lee, T., Nguyen, V.C., Nguyen, T.D. (2024). Construction of BiOCl/bismuth-based halide perovskite heterojunctions derived from the metal-organic framework CAU-17 for effective photocatalytic degradation. Chemosphere, 357, 142114. DOI: 10.1016/j.chemosphere.2024.142114
  32. Pham, H.A. Le, Nguyen, D.T., Nguyen, V.C., Ky Vo, T. (2024). Integrating Bi-containing metal–organic frameworks for enhancing their LED visible-light-driven photocatalytic activities towards Rhodamine dye. Inorganic Chemistry Communications, 159 DOI: 10.1016/j.inoche.2023.111822
  33. Liu, X., Su, Y., Zhao, Q., Du, C., Liu, Z. (2016). Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Scientific Reports, 6(1), 28689. DOI: 10.1038/srep28689
  34. Chai, W., Yin, W., Wang, K., Ye, W., Tang, B., Rui, Y. (2019). Carbon-coated bismuth nanospheres derived from Bi-BTC as a promising anode material for lithium storage. Electrochimica Acta, 325, 134927. DOI: 10.1016/j.electacta.2019.134927

Last update:

No citation recorded.

Last update:

No citation recorded.