1Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
2Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Viet Nam
3Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
BibTex Citation Data :
@article{BCREC20345, author = {Pham Bui Bao Long and Van Cuong Nguyen and Hoang Ai Le Pham and Qui Thanh Hoai Ta and Huu Phuc Dang}, title = {Effect of the Dimethylformamide/Isopropanol Solvent Ratio on the Structure, Optical Properties, and Photodegradation Performance of RhB Using Bi-MOF}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {20}, number = {1}, year = {2025}, keywords = {Bi-MOFs; photodegradation; solvent; isopropanol; rhodamine B}, abstract = { This study investigated the structural characteristics, surface morphology, and photocatalytic activity of bismuth-based metal-organic frameworks (BiBTC-ISOx) synthesized with varying ratios of N, N-dimethylformamide (DMF) and isopropanol (ISO). X-ray diffraction confirmed the crystalline structure of the BiBTC-ISOx (x = 1, 3, 6) compounds, while FTIR spectroscopy verified the successful bonding between the ligand and the Bi 3+ complex. UV-Vis spectroscopy revealed strong UV light absorption with tunable bandgaps ranging from 3.28 to 3.68 eV. Nitrogen adsorption/desorption analysis revealed a hierarchical micro/mesoporous structure, with BiBTC-ISO6 exhibiting the highest surface area (24.968 m 2 /g). SEM imaging revealed a rectangular rod-like morphology, which became more elongated with increasing ISO content. The photocatalytic activity of BiBTC-ISOx was evaluated based on the degradation of Rhodamine B (RhB) under visible light, with BiBTC-ISO6 demonstrating the highest efficiency. Optimal conditions for RhB degradation were determined to be 0.03 g catalyst mass, 10 ppm RhB concentration, and pH of 3. Mechanistic studies revealed that superoxide radicals are the primary active species in the photocatalytic process. The BiBTC-ISO6 catalyst exhibited excellent stability and reusability over three consecutive degradation cycles, highlighting its potential for practical applications in organic dye removal. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {166--176} doi = {10.9767/bcrec.20345}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20345} }
Refworks Citation Data :
This study investigated the structural characteristics, surface morphology, and photocatalytic activity of bismuth-based metal-organic frameworks (BiBTC-ISOx) synthesized with varying ratios of N, N-dimethylformamide (DMF) and isopropanol (ISO). X-ray diffraction confirmed the crystalline structure of the BiBTC-ISOx (x = 1, 3, 6) compounds, while FTIR spectroscopy verified the successful bonding between the ligand and the Bi3+ complex. UV-Vis spectroscopy revealed strong UV light absorption with tunable bandgaps ranging from 3.28 to 3.68 eV. Nitrogen adsorption/desorption analysis revealed a hierarchical micro/mesoporous structure, with BiBTC-ISO6 exhibiting the highest surface area (24.968 m2/g). SEM imaging revealed a rectangular rod-like morphology, which became more elongated with increasing ISO content. The photocatalytic activity of BiBTC-ISOx was evaluated based on the degradation of Rhodamine B (RhB) under visible light, with BiBTC-ISO6 demonstrating the highest efficiency. Optimal conditions for RhB degradation were determined to be 0.03 g catalyst mass, 10 ppm RhB concentration, and pH of 3. Mechanistic studies revealed that superoxide radicals are the primary active species in the photocatalytic process. The BiBTC-ISO6 catalyst exhibited excellent stability and reusability over three consecutive degradation cycles, highlighting its potential for practical applications in organic dye removal. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)