skip to main content

Pure Phase Co3O4 Anchored on Nitrogen-Doped Porous Carbon for High-Performance Lithium-ion Batteries

1Chongqing Key Lab of Catalysis and Environments, School of Environment and Resources, , China

2Chongqing Technology and Business University, Chongqing 400067, China

3Information Technology Service Center of Zhongxian Industrial Park, Chongqing 404300, China

4 Xi'an Rare Metal Materials Institute Co. Ltd, Xi'an 710000, China

View all affiliations
Received: 29 Oct 2024; Revised: 15 Jan 2025; Accepted: 15 Jan 2025; Available online: 18 Jan 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Transition metal oxides (TMOs), due to their high theoretical capacity, and long cycling stability, have received increasing attention as the anode materials for lithium-ion batteries (LIBs). In this work, a kind of TMOs, Co3O4, anchored on nitrogen-doped porous carbon (NC), has been successfully synthesized via calcining cobalt salts and biomass precursor together. The synthesized Co3O4/NC as an anode material for lithium-ion batteries illustrates excellent cycling performances. At a current density of 1.0 A.g-1, the Co3O4/NC anode could maintain a superior high reversible capacity of 1131.4 mAh.g-1 after 2000 cycles. Even if the current increases to 8.0 A.g-1, it still shows a reversible capacity of 502.9 mAh.g-1. Such excellent electrochemical performances could be attributed to the high specific surface area of NC that facilitates the uniform dispersion of Co3O4 nanoparticles on it as well as the abundant porous structure and good conductivity of NC that enhance the Li+ transfer and electrons transfer, respectively. In a word, this work provides a simple strategy for synthesizing the NC-supported pure phase Co3O4 composite anode material for realizing high-performance LIBs. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Lithium-ion battery; high-performances; Nitrogen-doped porous carbon; Nano-structured Co3O4
Funding: Natural Science Foundation of China under contract Grant No.51902036; Natural Science Foundation of Chongqing Science & Technology Commission under contract Grant No. CSTB2022NSCQ-MSX0828; the Key Science and Technology Research Program of Chongqing Education Commission under contract No. KJZD-K202200807; Chongqing Bayu Scholars Support Program under contract No. YS2022050; Research Project of Innovative Talent Training Engineering Program of Chongqing Primary and Secondary School under contract Grant No. CY240806

Article Metrics:

  1. Song, D., Yu, J., Wang, M., Tan, Q., Liu, K., Li, J. (2023). Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Materials, 102870. DOI: 10.1016/j.ensm.2023.102870
  2. Xu, J., Cai, X., Cai, S., Shao, Y., Hu, C., Lu, S., Ding, S. (2023). High‐energy lithium‐ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 6 (5), e12450. DOI: 10.1002/eem2.12450
  3. Chang, H., Wu, Y.-R., Han, X., Yi, T.-F. (2021). Recent developments in advanced anode materials for lithium-ion batteries. Energy Materials, 1 (1), 100003. DOI: 10.20517/energymater.2021.02
  4. Cao, Y., He, Y., Gang, H., Wu, B., Yan, L., Wei, D., Wang, H. (2023). Stability study of transition metal oxide electrode materials. Journal of Power Sources, 560 (15), 232710. DOI: 10.1016/j.jpowsour.2023.232710
  5. Xiao, Y., Li, T., Mao, Y., Hao, X., Wang, W., Meng, S., Wu, J., Zhao, J. (2023). Core-shell N-doped carbon embedded Co3O4 nanoparticles with interconnected and hierarchical porous structure as superior anode materials for lithium-ion batteries. Journal of Energy Storage, 63, 106998. DOI: 10.1016/j.est.2023.106998
  6. Roselin, L.S., Juang, R.-S., Hsieh, C.-T., Sagadevan, S., Umar, A., Selvin, R., Hegazy, H.H. (2019). Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials, 12 (8), 1229. DOI: 10.3390/ma12081229
  7. Wang, L., Chen, B., Ma, J., Cui, G., Chen, L. (2018). Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chemical Society Reviews, 47(17), 6505-6602. DOI: 10.1039/C8CS00322J
  8. Zhao, Y., Wang, L.P., Sougrati, M.T., Feng, Z., Leconte, Y., Fisher, A., Srinivasan, M., Xu, Z. (2017). A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Advanced Energy Materials, 7(9), 1601424. DOI: 10.1002/aenm.201601424
  9. Mahmood, Z.H., Jarosova, M., Kzar, H.H., Machek, P., Zaidi, M., Dehno Khalaji, A., Khlewee, I.H., Altimari, U.S., Mustafa, Y.F., Kadhim, M.M. (2022). Synthesis and characterization of Co3O4 nanoparticles: application as performing anode in Li‐ion batteries. Journal of the Chinese Chemical Society, 69 (4), 657-662. DOI: 10.1002/jccs.202100525
  10. Wang, D., Yu, Y., He, H., Wang, J., Zhou, W., Abruña, H.D. (2015). Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano, 9 (2), 1775-1781. DOI: 10.1021/nn506624g
  11. Liu, W., Fu, Y., Li, Y., Chen, S., Song, Y., Wang, L. (2019). Three-dimensional carbon foam surrounded by carbon nanotubes and Co-Co3O4 nanoparticles for stable lithium-ion batteries. Composites Part B: Engineering, 163, 464-470. DOI: 10.1016/j.compositesb.2019.01.038
  12. Li, S., Wu, K., Li, L., Suo, L., Zhu, Y. (2019). An architecture of dandelion-type Ni-Co3O4 microspheres on carbon nanotube films toward an efficient catalyst for oxygen reduction in zinc-air batteries. Applied Surface Science, 481, 40-51. DOI: 10.1016/j.apsusc.2019.03.053
  13. Li, X., Tian, X., Yang, T., Song, Y., Liu, Y., Guo, Q., Liu, Z. (2018). Two-pot synthesis of one-dimensional hierarchically porous Co3O4 nanorods as anode for lithium-ion battery. Journal of Alloys and Compounds, 735, 2446-2452. DOI: 10.1016/j.jallcom.2017.12.001
  14. Sennu, P., Madhavi, S., Aravindan, V., Lee, Y.-S. (2020). Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: a sustained Li-storage via conversion pathway. ACS Nano, 14 (8), 10648-10654. DOI: 10.1021/acsnano.0c04950
  15. Zhang, Y., Xie, M., He, Y., Zhang, Y., Liu, L., Hao, T., Ma, Y., Shi, Y., Sun, Z., Liu, N. (2021). Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chemical Engineering Journal, 420, 130469. DOI: 10.1016/j.cej.2021.130469
  16. Xiong, S., Lin, M., Wang, L., Liu, S., Weng, S., Jiang, S., Xu, Y., Jiao, Y., Chen, J. (2021). Defects-type three-dimensional Co3O4 nanomaterials for energy conversion and low temperature energy storage. Applied Surface Science, 546, 149064. DOI: 10.1016/j.apsusc.2021.149064
  17. Hu, C., Dai, L. (2019). Doping of carbon materials for metal‐free electrocatalysis. Advanced Materials, 31(7), 1804672. DOI: 10.1002/adma.201804672
  18. Liu, H., Liu, X., Li, W., Guo, X., Wang, Y., Wang, G., Zhao, D. (2017). Porous carbon composites for next generation rechargeable lithium batteries. Advanced Energy Materials, 7(24), 1700283. DOI: 10.1002/aenm.201700283
  19. Rehnlund, D., Wang, Z., Nyholm, L. (2022). Lithium‐diffusion induced capacity losses in lithium‐based batteries. Advanced Materials, 34(19), 2108827. DOI: 10.1002/adma.202108827
  20. Gu, Z.-Y., Sun, Z.-H., Guo, J.-Z., Zhao, X.-X., Zhao, C.-D., Li, S.-F., Wang, X.-T., Li, W.-H., Heng, Y.-L., Wu, X.-L. (2020). High-rate and long-cycle cathode for sodium-ion batteries: Enhanced electrode stability and kinetics via binder adjustment. ACS Applied Materials & Interfaces, 12 (42), 47580-47589. DOI: 10.1021/acsami.0c14294
  21. Reddy, Y.V.M., Shin, J.H., Palakollu, V.N., Sravani, B., Choi, C.-H., Park, K., Kim, S.-K., Madhavi, G., Park, J.P., Shetti, N.P. (2022). Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science, 304, 102664. DOI: 10.1016/j.cis.2022.102664
  22. Sehrawat, P., Julien, C., Islam, S. (2016). Carbon nanotubes in Li-ion batteries: A review. Materials Science and Engineering: B, 213, 12-40. DOI: 10.1016/j.mseb.2016.06.013
  23. Li, W., Li, M., Adair, K.R., Sun, X., Yu, Y. (2017). Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 5(27), 13882-13906. DOI: 10.1039/C7TA02153D
  24. Zheng, M., Tang, H., Li, L., Hu, Q., Zhang, L., Xue, H., Pang, H. (2018). Hierarchically nanostructured transition metal oxides for lithium‐ion batteries. Advanced Science, 5 (3), 1700592. 1700592. DOI: 10.1002/advs.201700592
  25. Zhang, M., Deng, Z.-P., Zhang, X.-F., Huo, L.-H. Gao, S. (2021). Biomass-derived graphitic carbon/Co3O4 nanocomposites with pseudocapacitance for lithium storage. ACS Applied Nano Materials, 4(2), 1340-1350. DOI: 10.1021/acsanm.0c02903
  26. Han, Q., Li, Y., Zhang, W., Li, X., Geng, D., Zhang, X., He, D. (2019). Two-step route for manufacturing the bio-mesopores structure functional composites by mushroom-derived carbon/Co3O4 for lithium-ion batteries. Journal of Electroanalytical Chemistry, 848, 113347. DOI: 10.1016/j.jelechem.2019.113347
  27. Lee, J.S., Jo, M.S., Saroha, R., Jung, D.S., Seon, Y.H., Lee, J.S., Kang, Y.C., Kang, D.W., Cho, J.S. (2020). Hierarchically well‐developed porous graphene nanofibers comprising N‐doped graphitic C‐coated cobalt oxide hollow nanospheres as anodes for high‐rate Li‐ion batteries. Small, 16 (32), 2002213. DOI: 10.1002/smll.202002213
  28. Zhai, X., Xu, X., Zhu, X., Zhao, Y., Li, J., Jin, H. (2018). Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. Journal of Materials Science, 53, 1356-1364. DOI: 10.1007/s10853-017-1579-3
  29. Ge, Z., Jiang, L., Liang, F., Zhang, Z., Wu, D., Ye, W., Han, N., Rui, Y., Zhang, W., Tang, B.J.E. (2022). Nitrogen-doped porous Ag–C@ Co3O4 nanocomposite for boosting lithium ion batteries. Energy & Fuels, 36(5), 2861-2871. DOI: 10.1021/acs.energyfuels.1c04338
  30. Liu, K., Xiong, X., Li, J., Liu, M., Wu, Z.,Li, F. (2024). Controlled graphene interfacial carbon nitride preparation for carbon negative electrodes of lithium-ion batteries. Electrochimica Acta, 493,1 44219. DOI: 10.1016/j.electacta.2024.144219
  31. Han, X., Ang, E.H., Zhou, C., Zhu, F., Zhang, X., Geng, H., Cao, X., Zheng, J., Gu, H. (2021). Dual carbon-confined Sb2 Se3 nanoparticles with pseudocapacitive properties for high-performance lithium-ion half/full batteries. Dalton Transactions, 50 (19), 6642-6649. DOI: 10.1039/D1DT00025J
  32. Hou, Z., Shu, C., Hei, P., Yang, T., Zheng, R., Ran, Z., Long, J. (2020). A 3D free-standing Co doped Ni2P nanowire oxygen electrode for stable and long-life lithium–oxygen batteries. Nanoscale, 12 (12), 6785-6794. DOI: 10.1039/C9NR10793B
  33. Guo, L., Ding, Y., Qin, C., Li, W., Du, J., Fu, Z., Song, W., Wang, F. (2016). Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 187, 234-242. DOI: 10.1016/j.electacta.2015.11.065
  34. Zhong, W., Zeng, Z., Cheng, S., Xie, J. (2024). Advancements in Prelithiation Technology: Transforming Batteries from Li‐Shortage to Li‐Rich Systems. Advanced Functional Materials, 34(2), 2307860. DOI: 10.1002/adfm.202307860
  35. Li, L., Dong, G., Xu, Y., Cheng, X., Gao, S., Zhang, X., Zhao, H., Huo, L. (2020). H3IDC-assisted synthesis of mesoporous ultrafine Co3O4/N-doped carbon nanowires as a high rate and long-life anode for Lithium-ion batteries. Journal of Alloys and Compounds, 818, 152826. DOI: 10.1016/j.jallcom.2019.152826
  36. Kang, Y., Zhang, Y.-H., Shi, Q., Shi, H., Xue, D., Shi, F.-N. (2021). Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries. Journal of Colloid and Interface Science, 585, 705-715. DOI: 10.1016/j.jcis.2020.10.050
  37. Wang, Y., Guo, R., Liu, W., Zhu, L., Huang, W., Wang, W., Zheng, H. (2019). Co3O4 nanospheres composed of highly interconnected nanoparticles for boosting Li-Ion storage. Journal of Power Sources, 444, 227260. DOI: 10.1016/j.jpowsour.2019.227260
  38. Ma, S., Wan, G., Yan, Z., Liu, X., Chen, T., Wang, X., Dai, J., Lin, J., Liu, T., Gu, X. (2024). Eco-friendly aqueous binder derived from waste ramie for high-performance Li-S battery. 109853. Chinese Chemical Letters, 109853. DOI: 10.1016/j.cclet.2024.109853
  39. Li, J., Dou, F., Gong, J., Gao, Y., Hua, Y., Sielicki, K., Zhang, D., Mijowska, E., Chen, X. J. (2023). Recycling of plastic wastes for the mass production of yolk–shell-nanostructured Co3O4@C for lithium-ion batteries. ACS Applied Nano Materials, 6(2), 1171-1180. DOI: 10.1021/acsanm.2c04757
  40. Sennu, P., Christy, M., Aravindan, V., Lee, Y., Nahm, K., Lee, Y. (2015). Two-Dimensional Mesoporous Cobalt Sulfide Nanosheets as a Superior Anode for a Li-Ion Battery and a Bifunctional Electrocatalyst for the Li-O2 System. Chemistry of Materials, 27 (16), 5726e5735. DOI: 10.1021/acs.chemmater.5b02364

Last update:

No citation recorded.

Last update:

No citation recorded.