skip to main content

Performance of a Batch Operation Microbial Fuel Cell (MFC) with Cobalt Micronutrient Addition Based on Kinetic Models

Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl Raya ITS, 60111, Surabaya, Indonesia, Indonesia

Received: 22 Nov 2024; Revised: 23 Dec 2024; Accepted: 25 Dec 2024; Available online: 30 Dec 2024; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The generation of electricity via MFC is subject to alteration by the concentration of the substrate. The objective of this study was to examine the performance of MFCs using both theoretical and experimental methods to ascertain the kinetic parameters associated with the addition of cobalt, with the aim of enhancing electricity generation via MFCs. The study demonstrated the impact of varying substrate concentrations and the composition of food waste and water, with formulas 0:5, 1:4, 2:3, 3:2, 4:1, and 5:0 (w/v). The kinetics of biochemical reactions were determined by employing the Monod and Gates-Marlar equations. The Monod equations were evaluated using three distinct representation methods. The Langmuir, Lineweaver-Burk, and Eadie-Hofstee models were employed. Conversely, the electrochemical reaction rate is evaluated through the Butler-Volmer equation. The current density derived from the theoretical approach exhibited a comparable pattern to that observed in the experimental data. The maximum power density was attained at a substrate concentration of 4:1 (w/v) exceeding 25,000 mW/m². The presented model facilitated the enhancement and optimization of MFC performance. Substrate concentration and biomass concentration exert a significant influence on MFC performance, as evidenced by the analysis of variance (ANOVA) and response surface methodology (RSM). Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: anova; electricity; kinetic; microbial fuel cell; response surface methodology
Funding: PMDSU Research Scholarship Program under contract 003/E5/PG.02.00/PL.PMDSU/2024

Article Metrics:

  1. Mohd Zaini Makhtar, M., & Vadivelu, V. M. (2019). Membraneless microbial fuel cell: characterization of electrogenic bacteria and kinetic growth model. Journal of Environmental Engineering, 145, 5. DOI: 10.1061/(ASCE)EE.1943-7870.0001522
  2. Xu, Z., Chen, S., Guo, S., Wan, D., Xu, H., Yan, W., ... & Feng, J. (2021). New insights in light-assisted microbial fuel cells for wastewater treatment and power generation: A win-win cooperation. Journal of Power Sources, 501, 230000. DOI: 10.1016/j.jpowsour.2021.230000
  3. Jafary, T., Ghoreyshi, A.A., Najafpour, G. D., Fatemi, S., & Rahimnejad, M. (2013). Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. International Journal of Energy Research, 37(12), 1539-1549. DOI: 10.1002/er.2994
  4. Miroliaei, M.R., Samimi, A., Mohebbi-Kalhori, D., & Khorram, M. (2015). Kinetics investigation of diversity cultures of E. coli and Shewanella sp., and their combined effect with mediator on MFC performance. Journal of Industrial and Engineering Chemistry, 25, 42-50. DOI: 10.1016/j.jiec.2014.10.011
  5. Reimers, C.E., Stecher III, H.A., Westall, J. C., Alleau, Y., Howell, K.A., Soule, L., ... & Girguis, P.R. (2007). Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Applied and Environmental Microbiology, 73(21), 7029-7040. DOI: 10.1128/AEM.01209-07
  6. Shihab, M.A., Dhahir, M.A., & Mohammed, H.K. (2020). Kinetic study of air bubbles-cetyltrimethylammonium bromide (CTAB) surfactant for recovering microalgae biomass in a foam flotation column. International Journal of Technology, 11, 440-449. DOI: 10.14716/ijtech.v11i3.3983
  7. Satriana, S., Maulida, A., Qardhawi, R., Lubis, Y.M., Moulana, R., Mustapha, W.A. W., & Arpi, N. (2023). Study of solid-liquid extraction kinetics of oil from dried avocado (Persea Americana) flesh using hexane as a solvent. Int. J. Technol., 14(5), 982-992. DOI: 10.14716/ijtech.v14i5.6370
  8. Prasetya, A., Darmawan, R., Araujo, T.L. B., Petrus, H.T.B.M., & Setiawan, F.A. (2021). A Growth Kinetics Model for Black Soldier Fly (Hermetia illucens) Larvae. International Journal of Technology, 12(1). DOI: 10.14716/ijtech.v12i1.4148
  9. Mohanakrishna, G., Al-Raoush, R.I., Abu-Reesh, I.M., & Aljaml, K. (2019). Removal of petroleum hydrocarbons and sulfates from produced water using different bioelectrochemical reactor configurations. Science of the Total Environment, 665, 820-827. DOI: 10.1016/j.scitotenv.2019.02.181
  10. Utami, T., Arbianti, R., & Trisnawati, I. (2017). Performance evaluation of single-chamber microbial fuel cell with variation of external resistance. Asian Journal Microbiol Biotechnol Environmental Science, 19, 872-877. DOI: 10.7454/mst.v17i1.1925
  11. Imwene, K.O., Mbui, D.N., Mbugua, J.K., Kinyua, A.P., Kairigo, P.K., & Onyatta, J.O. (2021). Kinetic modelling of microbial fuel cell voltage data from market fruit wastes in Nairobi Kenya. International Journal of Scientific Research in Chemistry, 6 (5), 2456-8457. DOI: 10.21654/IJSRCH.2021.6
  12. Mbugua, J.K., Mbui, D.N., Waswa, A.G., & Mwaniki, J.M. (2022). Kinetic Studies and Simulation of Microbial Fuel Cells Voltage from Clostridium Spp. and Proteus. Journal of Microbial Biochemical Technology. 14, 2, 1000483 DOI: 10.35248/1948-5948.22.14.483
  13. Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101 (6), 1533-1543. DOI: 10.1016/j.biortech.2009.10.017
  14. Sharma, Y., & Li, B. (2010). The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technology, 101 (6), 1844-1850. DOI: 10.1016/j.biortech.2009.10.040
  15. Tsipa, A., Varnava, C.K., Grenni, P., Ferrara, V., & Pietrelli, A. (2021). Bio-electrochemical system depollution capabilities and monitoring applications: Models, applicability, advanced bio-based concept for predicting pollutant degradation and microbial growth kinetics via gene regulation modelling. Processes, 9 (6), 1038. DOI: 10.3390/pr9061038
  16. Boas, J.V., Oliveira, V.B., Simões, M., & Pinto, A.M.F.R. (2022). A 1D model for a single chamber microbial fuel cell. Chemical Engineering Research and Design, 184, 627-636. DOI: 10.1016/j.cherd.2022.06.030
  17. Mandal, S., Sundaramurthy, S., Arisutha, S., Rene, E.R., Lens, P.N., Zahmatkesh, S., ... & Bokhari, A. (2023). Generation of bio-energy after optimization and controlling fluctuations using various sludge activated microbial fuel cell. Environmental Science and Pollution Research, 30 (60), 125077-125087. DOI: 10.1007/s11356-023-26344-3
  18. Lee, J.M. (2002). Biochemical Engineering. 2.1 ed. Washington :Prentice-Hall Inc
  19. Kaur, P., Jana, A.K., & Jana, M.M. (2024). Immobilization of Candida rugosa lipase on optimized polyamidoamine dendrimer functionalized magnetic multiwalled carbon nanotubes for green manufacture of butyl butyrate ester. Molecular Catalysis, 553, 113779. DOI: 10.1016/j.mcat.2023.113779
  20. Huang, S., Zhang, J., Zhang, H., Wang, C., Zou, C., Zhang, Y., & Zhu, G. (2024). Electric field effect of microbial fuel cells on biological reactions: A review. International Biodeterioration & Biodegradation, 194, 105886. DOI: 10.1016/j.ibiod.2024.105886
  21. Aghajanzadeh, I., Ramezanianpour, A. M., Amani, A., & Habibi, A. (2024). Mixture optimization of alkali activated slag concrete containing recycled concrete aggregates and silica fume using response surface method. Construction and Building Materials, 425, 135928. DOI: 10.1016/j.conbuildmat.2024.135928
  22. Selvam, A., Udayakumar, M., Banu, R.J., & Wong, J. (2021). Sustainable Food Waste Management: Resource Recovery and Treatment. Current Developments in Biotechnology and Bioengineering, 11-41. DOI: 10.1016/B978-0-12-819148-4.00002-6
  23. Guo, W., Feng, J., Song, H., & Sun, J. (2014). Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity. Environmental Science and Pollution Research, 21, 11531-11540. DOI: 10.1007/s11356-014-3071-9
  24. Rojas, M., Ruano, D., Orrego-Restrepo, E., & Chejne, F. (2023). Non-isothermal kinetics of cellulose, hemicellulose, and lignin degradation during cocoa bean shell pyrolysis. Biomass and Bioenergy, 177, 106932. DOI: 10.1016/j.biombioe.2023.106932
  25. PWolff, P.B., Nielsen, M.L., Slot, J.C., Andersen, L.N., Petersen, L.M., Isbrandt, T., ... & Hoof, J.B. (2020). Acurin A, a novel hybrid compound, biosynthesized by individually translated PKS-and NRPS-encoding genes in Aspergillus aculeatus. Fungal Genetics and Biology, 139, 103378. DOI: 10.1016/j.fgb.2020.103378
  26. Pleissner, D., Kwan, T.H., & Lin, C.S. K. (2014). Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresource Technology, 158, 48-54. DOI: 10.1016/j.biortech.2014.01.139
  27. De Maria, P.D., Sánchez-Montero, J.M., Sinisterra, J.V., & Alcántara, A.R. (2006). Understanding Candida rugosa lipases: an overview. Biotechnology Advances, 24 (2), 180-196. DOI: 10.1016/j.biotechadv.2005.09.003
  28. Turini, C.D.S., Nogueira, R.M., Pires, E.M., & Agostini, J.D.S. (2021). Enzymatic hydrolysis of carbohydrates in by-products of processed rice. Ciência Rural, 51(11), e20200522. DOI: 10.1590/0103-8478cr20200522
  29. Molina-Penate, E., Sánchez, A., & Artola, A. (2022). Enzymatic hydrolysis of the organic fraction of municipal solid waste: Optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fermentation. Waste Management, 137, 304-311. DOI: 10.1016/j.wasman.2021.11.014
  30. Zhang, C., Kang, X., Wang, F., Tian, Y., Liu, T., Su, Y., ... & Zhang, Y. (2020). Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy, 208, 118379. DOI: 10.1016/j.energy.2020.118379
  31. Toif, M.E., Hidayat, M., Rochmadi, R., & Budiman, A. (2023). Heterogeneous Reaction Model for Evaluating the Kinetics of Levulinic Acid Synthesis from Pretreated Sugarcane Bagasse. International Journal of Technology, 14(2), 300-309. DOI: 10.14716/ijtech.v14i2.5110
  32. Toif, M.E., Hidayat, M., Rochmadi, R., & Budiman, A. (2023). Heterogeneous Reaction Model for Evaluating the Kinetics of Levulinic Acid Synthesis from Pretreated Sugarcane Bagasse. International Journal of Technology, 14(2), 300-309. DOI: 10.268211585/jbiochemtech.2014
  33. Zhang, P., Liu, J., Qu, Y., Li, D., He, W., & Feng, Y. (2018). Nanomaterials for facilitating microbial extracellular electron transfer: Recent progress and challenges. Bioelectrochemistry, 123, 190-200. DOI: 10.1016/j.bioelechem.2018.05.005
  34. Zhang, P., Liu, J., Qu, Y., Li, D., He, W., & Feng, Y. (2018). Nanomaterials for facilitating microbial extracellular electron transfer: Recent progress and challenges. Bioelectrochemistry, 123, 190-200. DOI: 10.1016/j.tsep.2024.102453
  35. Gao, S., Zhao, Y., Zhao, X., & Zhang, Y. (2023, November). Application of response surface method based on new strategy in structural reliability analysis. In Structures, 57, 105202. DOI: 10.1016/j.istruc.2023.105202
  36. Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Asch, M., Assaf-Ducrocq, C., & Gontier, E. (2010). Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the response surface methodology (RSM). International Journal of Molecular Sciences, 11(11), 4726-4740. DOI: 10.3390/ijms11114726
  37. Reji, M., & Kumar, R. (2022). Response surface methodology (RSM): An overview to analyze multivariate data. Indian Journal Microbiology Research, 9, 241-248. DOI: 10.18231/j.ijmr.2022.042
  38. Igbani, S., Appah, D., & Ogoni, H. A. (2020). The application of response surface methodology in minitab 16, to identify the optimal, comfort, and adverse zones of compressive strength responses in ferrous oilwell cement sheath systems. Int. International Journal of Engineering and Modern Technology, 6, 20-39. DOI: 10.56201/ijemt.2020
  39. Jorge, P., Lourenço, A., & Pereira, M.O. (2015). Data quality in biofilm high-throughput routine analysis: intralaboratory protocol adaptation and experiment reproducibility. Journal of AOAC International, 98(6), 1721-1727. DOI: 10.5740/jaoacint.15-066

Last update:

No citation recorded.

Last update:

No citation recorded.