skip to main content

Vegetal Oil Transesterification Using Tetranuclear Zinc-Diterpene Clusters as the Catalysts

1Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Mexico

2Laboratorio de Catálisis, División de Estudios de Posgrado de la Facultad de Ingeniería Química, Edificio V-1, Universidad Michoacana de San Nicolás de Hidalgo Ciudad Universitaria, Morelia, Michoacán 58030, Mexico

3Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico

Received: 2 Oct 2024; Revised: 16 Jan 2025; Accepted: 17 Jan 2025; Available online: 23 Jan 2025; Published: 30 Apr 2025.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Organic natural products, particularly vegetal secondary metabolites, represent a highlighted source for molecules usable for many purposes, including synthesizing catalysts. Biocompatible metals can yield interesting coordination complexes to provide sustainable and valuable compounds. In the present paper, the unique in their class (μ4-oxo)-hexakis(μ2-beyerenate)-tetra-zinc(II) (1) and (μ4-oxo)-hexakis(μ2-kaurenate)-tetra-zinc(II) (2) are suggested as eco-friendly catalysts for transesterification reactions. The heterogeneous/homogeneous catalytic potential of 1 and 2 was revealed using olive oil as an equilibrated saturated-unsaturated fatty acid mixture and methanol as the nucleophile and solvent. Systematic variations in reaction conditions were achieved herein, including temperature, catalyst mass, methanol volume, and reaction time, allowing a yield of up to 97% in the transesterification process. The FAME product was characterized using 1H NMR and GC-MS, and the calorific value of 33.72 MJ/kg was concordant with the literature. The thermogravimetric, powder X-ray diffraction, and Scanning Electron Microscopy experiments complemented the catalyst properties before and after the catalytic tests. This finding suggests that coordination complexes using natural products as ligands represent a new class of potential ecological catalysts from industry and scientific research in crucial chemical reactions. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Zinc cluster; Fatty acids; FAME; Catalysis; Vegetal Oil Transesterification; Zinc-Diterpene
Funding: CIC-UMSNH

Article Metrics:

  1. Rehfeldt, M., Worrell, E., Eichhammer, W., Fleiter, T. (2020). A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030. Renewable and Sustainable Energy Reviews, 120, 109672. DOI: 10.1016/j.rser.2019.109672
  2. Abomohra, A.E.-F., Elsayed, M., Esakkimuthu, S., El-Sheekh, M., Hanelt, D. (2020). Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Progress in Energy and Combustion Science, 81, 100868. DOI: 10.1016/j.pecs.2020.100868
  3. Solarin, S.A. (2020). An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. Environmental Impact Assessment Review, 85, 106443. DOI: 10.1016/j.eiar.2020.106443
  4. Malla, F.A., Bandh, S.A., Wani, S.A., Hoang, A.T., Sofi, N.A. (2022). Biofuels: Potential alternatives to fossil fuels. In Bandh S.A., Malla F.A. (Eds.) Biofuels in circular economy, Singapore: Springer. DOI: 10.1007/978-981-19-5837-3_1
  5. Ling, T.R., Li, Y.Y., Tsai, C.M., Hung T.T. (2024). Biodiesel produced from waste cooking oil by microwave transesterification using inert aluminium foil (1%) as a heating promoter. Sustainable Chemistry and Pharmacy, 41, 101738. DOI: 10.1016/j.scp.2024.101738
  6. Lin, K.S., Mdlovu, N.V., Chan, H.Y., Wu, K.C.W., Wu, J.C.S., Huang, Y.T. (2022). Preparation and characterization of mesoporous polymer-based solid acid catalysts for biodiesel production via transesterification of palmitic oils. Catalysis Today, 397, 145–154. DOI: 10.1016/j.cattod.2021.11.017
  7. Lijuan, H., Long, C., Yingxia, N., Minglu, H., Guixiang, W., Yan, L., Hanjing T., Heng, Z. (2024). A practical approach for enhanced biodiesel production using organic modified montmorillonites as efficient heterogeneous hybrid catalysts. Green Chemistry, DOI: 10.1039/D4GC01084A
  8. Baohong, Z., Long, C., Lijuan, H., Hao, W., Hu, L., Heng, Z., Song, Y. (2024). Facile synthesis of chitosan-derived sulfonated solid acid catalysts for realizing highly effective production of biodiesel. Industrial Crops and Products, 210, 118058. DOI: 10.1016/j.indcrop.2024.118058
  9. Hao, W., Heng, Z., Qiong, Y., Xu, W., Heng, Z. (2023). Superparamagnetic nanospheres with efficient bifunctional acidic sites enable sustainable production of biodiesel from budget non-edible oils. Energy Conversion and Management, 297, 117758. DOI: 10.1016/j.enconman.2023.117758
  10. Lijuan, H., Long, C., Baohong, Z., Heng, Z., Hao, W., Hu, L., Heng, Z., Chunbao, C.X., Song, Y. (2023). Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chemistry, 25, 7410–7440. DOI: 10.1039/D3GC02816J
  11. Gallego-Villada, L.A., Alarcón, E.A., Ruiz, D.M., Romanelli, G.P. (2022). Kinetic study of the esterification of t-cinnamic acid over Preyssler structure acid. Molecular Catalysis, 528, 112507. DOI: 10.1016/j.mcat.2022.112507
  12. Dehghan, L., Golmakani, M.T., Hosseini, S.M.H. (2019). Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production. Renewable Energy, 138, 915–922. DOI: 10.1016/j.renene.2019.02.017
  13. Gallego-Villada, L.A., Alarcón, E.A., Cerrutti, C., Blustein, G., Sathicq, A.G., Romanelli, G.P. (2023). Levulinic acid esterification with n-butanol over a Preyssler catalyst in a microwave-assisted batch reactor: A kinetic study. Industrial & Engineering Chemistry Research, 62, 10915–10929. DOI: 10.1021/acs.iecr.3c00893
  14. Gallego-Villada, L.A., Alarcón, Sathicq, A.G., Romanelli, G.P. (2024). Kinetic modeling of microwave-assisted esterification for biofuel additive production: conversion of levulinic acid with pentanol using Dowex® 50WX8 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 137, 2081–2103. DOI: 10.1007/s11144-024-02657-3
  15. Elgharbawy, A.S., Sadik, W.A., Sadek, O.M., Kasaby, M.A. (2021). A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 66, 5098–5109. DOI: 10.4067/S0717-97072021000105098
  16. Ershov, M.A., Savelenko, V.D., Makhova, U.A., Makhmudova, A.E., Zuikov, A.V., Kapustin, V.M., Abdellatief, T.M.M., Burov, N.O., Geng, T., Abdelkareem, M.A., Olabi, A.G. (2023). Current challenge and innovative progress for producing HVO and FAME biodiesel fuels and their applications. Waste Biomass Valorization, 14, 505–521. DOI: 10.1007/s12649-022-01880-0
  17. Chilakamarry, C.R., Sakinah, A.M.M., Zularisam, A.W., Pandey, A. (2021). Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing, 1, 378–396. DOI: 10.1007/s43393-021-00036-w
  18. Szöke, É., Kéry, Á., Lemberkovics, É. (2023). biosynthesis of plant substances; biogenetic relationships. In Szöke É., Kéry Á., Lemberkovics É. (Eds.), From herbs to healing, Germany: Springer. DOI: 10.1007/978-3-031-17301-1_3
  19. Sánchez-Velandia, J. E., Gallego-Villada, L. A., Mäki-Arvela, P., Sidorenko, A., Murzin, Y.D. (2024). Upgrading biomass to high-added value chemicals: Synthesis of monoterpenes-based compounds using catalytic green chemical pathways. Catalysis Reviews, 1–126. DOI: 10.1080/01614940.2024.2329553
  20. Christianson, D.W. (2017). Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 117, 11570–11648. DOI: 10.1021/acs.chemrev.7b00287
  21. Domingo, V., Quilez del Moral, J.F., Barrero, A.F. (2016). Chapter 1 - Recent accomplishments in the total synthesis of natural products through C–H functionalization strategies. In Atta-ur-Rahman (Ed.) Studies in natural products chemistry, Amsterdam: Elsevier. DOI: 10.1016/B978-0-444-63602-7.00001-1
  22. Gómez-Hurtado, M.A., Nava-Andrade, K., Villagómez-Guzmán, A.K., del Río, R.E., Andrade-López, N., Alvarado-Rodríguez, J.G., Martínez-Otero, D., Morales-Morales, D., Rodríguez-García, G. (2017). Facile synthesis and structural characterization of μ4-oxo tetrazinc clusters of beyerenoic and kaurenoic acids. Tetrahedron Letters, 58, 1112–1116. DOI: 10.1016/j.tetlet.2017.01.085
  23. Auger, V., Robin, I. (1924). A basic zinc acetate analogous to beryllium acetate. Comptes Rendus, 178, 1546–1548
  24. Ohshima, T. (2016). Development of tetranuclear zinc cluster-catalyzed environmentally friendly reactions and mechanistic studies. Chemical and Pharmaceutical Bulletin, 64, 523–539. DOI: 10.1248/cpb.c16-00028
  25. Iwasaki, T., Maegawa, Y., Hayashi, Y., Ohshima, T., Mashima, K. (2008). Transesterification of various methyl esters under mild conditions catalyzed by tetranuclear zinc cluster. The Journal of Organic Chemistry, 73, 5147–5150. DOI: 10.1021/jo800625v
  26. Ohshima, T., Iwasaki, T., Maegawa, Y., Yoshiyama, A., Mashima, K. (2008). Enzyme-Like Chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. Journal of the American Chemical Society, 130, 2944-2945. DOI: 10.1021/ja711349r
  27. Iwasaki, T., Agura, K., Maegawa, Y., Hayashi, Y., Ohshima, T., Mashima, K. (2010). A tetranuclear-zinc-cluster-catalyzed practical and versatile deprotection of acetates and benzoates. Chemistry a European Journal, 16, 11567–11571. DOI: 10.1002/chem.201000960
  28. Ohshima, T., Iwasaki, T., Mashima, K. (2006). Direct conversion of esters, lactones, and carboxylic acids to oxazolines catalyzed by a tetranuclear zinc cluster. Chemical Communications, 25, 2711–2713. DOI: 10.1039/B605066B
  29. Tranchemontagne, D.J., Hunt, J.R., Yaghi, O.M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 64, 8553–8557. DOI: 10.1016/j.tet.2008.06.036
  30. Li, H., Eddaoudi, M., O'Keeffe, M., Yaghi, O.M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279. DOI: 10.1038/46248
  31. Roy, D., Kumar, P., Soni, A., Nemiwal, M. (2023). A versatile and microporous Zn-based MOFs as a recyclable and sustainable heterogeneous catalyst for various organic transformations: A review (2015-present). Tetrahedron, 138, 133408. DOI: 10.1016/j.tet.2023.133408
  32. Elkady, M.F., Zaatout, A., Balbaa, O. (2015). Production of biodiesel from waste vegetable oil via KM micromixer. Journal of Chemistry, 1–9. DOI: 10.1155/2015/630168
  33. Prasanthi, D., Lakshmi, P.K. (2012). Effect of lipophilicity in enhancing transdermal delivery of alfuzosin hydrochloride. Journal of Advanced Pharmaceutical Technology & Research, 3, 216–223. DOI: 10.4103/2231-4040.104712
  34. Oshima, T., Iwasaki, T., Maegawa, Y., Yoshiyama, A., Mashima, K. (2008). Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. Journal of the American Chemical Society, 130, 2944–2945. DOI: 10.1021/ja711349r
  35. Pamatz-Bolaños, T., Cabrera-Munguia, D.A., González, H., del Río, R.E., Rico, J.L., Rodríguez-García, G., Gutiérrez-Alejandre, A., Tzompantzi, F., Gómez-Hurtado, M.A. (2018). Transesterification of Caesalpinia eriostachys seed oil using heterogeneous and homogeneous basic catalysts. International Journal of Green Energy, 15, 465–472. DOI: 10.1080/15435075.2018.1473775
  36. Knothe, G. (2013). Avocado and olive oil methyl esters. Biomass Bioenergy, 58, 143–148. DOI: 10.1016/j.biombioe.2013.09.003
  37. Nakatake, D., Yazaki, R., Matsushima, Y., Ohshima, T. (2016). Transesterification reactions catalyzed by a recyclable heterogeneous zinc/imidazole catalyst. Advanced Synthesis & Catalysis, 358, 2569–2574. DOI: 10.1002/adsc.201600229
  38. Iwasaki, T., Maegawa, Y., Hayashi, Y., Ohshima, T., Mashima, K. (2009). A simple, general, and highly chemoselective acetylation of alcohols using ethyl acetate as the acetyl donor catalyzed by a tetranuclear zinc cluster. SYNLETT 10, 1659–1663. DOI: 10.1055/s-0029-1217335
  39. Campanelli, P., Banchero, M., Manna, L. (2010). Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel, 89, 3675–3682. DOI: 10.1016/j.fuel.2010.07.033
  40. Dehghan, L., Golmakan, M., Hosseini, S.M.H. (2019). Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production. Renewable Energy 138, 915–922. DOI: 10.1016/j.renene.2019.02.017
  41. Emetere, M.E., Jack-Quincy, S., Adejumo, A., Dauda, O., Osunlola, I., Adelekan, D., Adeyemi, O. (2018). Empirical analysis of biodiesel effect on the automobile properties of diesel engine: A case study of olive and soya biomass, Energy Science Engineering 6, 693–705. DOI: 10.1002/ese3.244
  42. Casiello, M., Catucci, L., Fracassi, F., Fusco, C., Laurenza, A.G., di Bitonto, L., Pastore, C., D´Accolti, L., Nacci, A. (2019). ZnO/ionic liquid catalyzed biodiesel production from renewable and waste lipids as feedstocks, Catalysts, 9, 71. DOI: 10.3390/catal9010071
  43. Nambo, A., Miralda, C.M., Jasinski, J.B., Carreon, M.A. (2015). Methanolysis of olive oil for biodiesel synthesis over ZnO nanorods, Reaction Kinetics, Mechanisms and Catalysis, 114, 583–595. DOI: 10.1007/s11144-014-0802-3
  44. Wang, A., Quan, W., Zhang, H., Yang, S. (2021). Heterogeneous ZnO-containing catalysts for efficient biodiesel production, RSC Advances, 11, 20465–20478. DOI: 10.1039/D1RA03158A
  45. Iwasaki, T., Maegawa, Y., Hayashi, Y., Ohshima, T., Mashima, K. (2008). Transesterification of various methyl esters under mild conditions catalyzed by tetranuclear zinc cluster, Journal of Organic Chemistry, 73, 5147–5150. DOI: 10.1021/jo800625v
  46. Sniady, A., Durham, A., Morreale, M.S., Marcinek, A., Szafert, S., Lis, T., Brzezinska, K.R., Iwasaki, T., Ohshima, T., Mashima, K., Dembinski, R. (2008). Zinc-catalyzed cycloisomerizations. synthesis of substituted furans and furopyrimidine nucleosides, Journal of Organic Chemistry, 73, 5881–5889. DOI: 10.1021/jo8007995
  47. Maegawa, Y., Ohshima, T., Hayashi, Y., Agura, K., Iwasaki, T., Mashima, K. (2011). Additive effect of N-heteroaromatics on transesterification catalyzed by tetranuclear zinc cluster, ACS Catalysis, 1, 1178–1182. DOI: 10.1021/cs200224b
  48. Raha, S., Ahmaruzzaman, Md. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives, Nanoscale Advances, 4, 1868–1925. DOI: 10.1039/d1na00880c
  49. Kulkarni, M.G., Gopinath, R., Mehera, L.C., Dalai, A.K. (2006). Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification, Green Chemistry, 8, 1056–1062. DOI: 10.1039/B605713F
  50. Singh, A.K., Fernando, S.D. (2008). Transesterification of soybean oil using heterogeneous catalysts, Energy & Fuels, 22, 2067-2069. DOI: 10.1021/ef800072z
  51. Reinoso, D.M., Ferreira, M.L., Tonetto, G.M. (2013). Study of the reaction mechanism of the transesterification of triglycerides catalyzed by zinc carboxylates, Journal of Molecular Catalysis A: Chemical, 377, 29–41. DOI: 10.1016/j.molcata.2013.04.024
  52. Melchiorre, M., Cucciolito, M.E., Di Serio, M., Ruffo, F., Tarallo, O., Trifuoggi, M., Esposito, R. (2021). ACS Sustainable Chemistry & Engineering, 9, 6001–6011. DOI: 10.1021/acssuschemeng.1c01140
  53. Salaheldeen, M., Mariod, A.A., Aroua, M.K., Rahman, S.M.A., Soudagar, M.E. M., Fattah, I.M.R. (2021). Current state and perspectives on transesterification of triglycerides for biodiesel production. Catalysts, 11, 1121. DOI: 10.3390/catal11091121

Last update:

No citation recorded.

Last update:

No citation recorded.