skip to main content

Catalytic Performance of Cu-Ni supported on Rice Husk Ash-derived SiO2 for the Hydrogenation of Ethylene Carbonate to Ethylene Glycol

1Research Center for Chemistry, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia

2Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah, Tangerang Selatan, Indonesia

Received: 31 Dec 2024; Revised: 6 Feb 2025; Accepted: 6 Feb 2025; Available online: 8 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Ethylene glycol, a crucial compound extensively utilized in solvents, coolants, antifreeze, polyester fiber production, and as a natural gas-drying agent, can be synthesized via the hydrogenation of ethylene carbonate. In this study, the synthesis, characterization, and catalytic performance of Cu-Ni/SiO2 catalysts for this reaction, utilizing silica (SiO2) derived from rice husk ash, were investigated. Silica was impregnated with copper (Cu) and nickel (Ni) by varying the weight ratio (Cu:Ni = 10, 7:3, 3:7, 10) to prepare bimetallic catalysts. X-ray Diffraction (XRD) analysis confirmed the presence of both Cu and Ni phases in all the catalysts. The 3Cu7Ni/SiO2 catalyst displayed the lowest reduction temperature and the largest surface area (257.97 m²/g). The 7Cu3Ni/SiO2 catalyst exhibited the highest acidity (1.91 mmol/g) and superior metal dispersion, as confirmed by the Field Emission Scanning Electron Microscopy - Energy Dispersive X-Ray (FE-SEM-EDX) analysis. Catalytic activity was evaluated in a batch reactor under 40 bar H2 pressure at 150 °C for 3 h with a catalyst-to-ethylene carbonate ratio of 5:1. Among the catalysts examined, the 7Cu-3Ni/SiO2 composition demonstrated the highest catalytic performance, achieving 15.14% conversion of ethylene carbonate and 80.51% selectivity towards ethylene glycol. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bimetallic Catalysts; Ethylene Carbonate; Ethylene Glycol; Hydrogenation; Silica
Funding: National Research and Innovation Agency (BRIN); Korea Institute of Science and Technology (KIST)

Article Metrics:

  1. Robinson, P.R. Petrochemicals. In Petroleum Science and Technology: Downstream; Springer, 2024; pp. 243–291
  2. Sharifara, E., Abbaspour, M., Saraei, A. (2024). Analysis of the High‐pressure Steam Import Behaviour of an Integrated Ethylene Oxide/Ethylene Glycol Petrochemical Plant under Different Production Scenarios. Can. J. Chem. Eng. 102, 1538–1557. DOI: 10.1002/cjce.25143
  3. Yang, Y., Yao, D., Zhang, M., Li, A., Gao, Y., Fayisa, B.A., Wang, M.-Y., Huang, S., Wang, Y., Ma, X. (2021) Efficient Hydrogenation of CO2-Derived Ethylene Carbonate to Methanol and Ethylene Glycol over Mo-Doped Cu/SiO2 Catalyst. Catal. Today, 371, 113–119. DOI: 10.1016/j.gce.2021.12.004
  4. Chen, X., Wang, L., Zhang, C., Tu, W., Cao, Y., He, P., Li, J., Li, H. (2021) The Effective and Stable Cu–C@ SiO2 Catalyst for the Syntheses of Methanol and Ethylene Glycol via Selective Hydrogenation of Ethylene Carbonate. Int. J. Hydrogen Energy, 46, 17209–17220. DOI: 10.1016/j.ijhydene.2021.02.166
  5. Riyandi, R., Rinaldi, N., Yunarti, R.T., Dwiatmoko, A.A., Simanjuntak, F.S.H. (2024) Effect of Various Silica-Supported Nickel Catalyst on the Production of Bio-Hydrocarbons from Oleic Acid. International Journal of Renewable Energy Development, 13, DOI: 10.61435/ijred.2024.60054
  6. Zarib, N.S.M., Abdullah, S.A., Ishak, N.N. (2020) Extraction of Silica from Rice Husk and Bamboo Leaves and Its Effect on the Ceramic Body Glazing Process. Applied Mechanics and Materials, 899, 156–162, DOI: 10.4028/www.scientific.net/amm.899.156
  7. Zhang, M., Yang, Y., Li, A., Yao, D., Gao, Y., Fayisa, B.A., Wang, M., Huang, S., Lv, J., Wang, Y. (2020) Nanoflower‐like Cu/SiO2 Catalyst for Hydrogenation of Ethylene Carbonate to Methanol and Ethylene Glycol: Enriching H2 Adsorption. ChemCatChem, 12, 3670–3678. DOI: 10.1002/cctc.202000365
  8. Fayisa, B.A., Xi, Y., Yang, Y., Gao, Y., Li, A., Wang, M.-Y., Lv, J., Huang, S., Wang, Y., Ma, X. (2022) Pt-Modulated Cu/SiO2 Catalysts for Efficient Hydrogenation of CO2-Derived Ethylene Carbonate to Methanol and Ethylene Glycol. Chin. J. Chem. Eng., 41, 366–373, DOI: 10.1016/j.cjche.2021.10.024
  9. Liu, J., He, P., Wang, L., Liu, H., Cao, Y., Li, H. (2018) An Efficient and Stable Cu/SiO2 Catalyst for the Syntheses of Ethylene Glycol and Methanol via Chemoselective Hydrogenation of Ethylene Carbonate. Chinese Journal of Catalysis, 39, 1283–1293, DOI: 10.1016/S1872-2067(18)63032-3
  10. Yang, Y., Zhang, J., Gao, Y., Fayisa, B.A., Li, A., Huang, S., Lv, J., Wang, Y., Ma, X. (2022) Highly Dispersed Nickel Boosts Catalysis by Cu/SiO2 in the Hydrogenation of CO2-Derived Ethylene Carbonate to Methanol and Ethylene Glycol. Chin. J. Chem. Eng., 43, 77–85. DOI: 10.1016/j.cjche.2022.01.017
  11. Groß, A. (2006) Reactivity of Bimetallic Systems Studied from First Principles. Top Catal., 37, 29–39, DOI: 10.1007/S11244-006-0005-X
  12. Fayisa, B.A., Xi, Y., Yang, Y., Gao, Y., Li, A., Wang, M.Y., Lv, J., Huang, S., Wang, Y., Ma, X. (2022) Pt-Modulated Cu/SiO2 Catalysts for Efficient Hydrogenation of CO2-Derived Ethylene Carbonate to Methanol and Ethylene Glycol. Journal of the Chemical Industry and Engineering Society of China, 41, 366–373, DOI: 10.1016/j.cjche.2021.10.024
  13. Gallego-Villada, L.A., Alarcón, E.A., Bustamante, F., Villa, A.L. (2024) One-Pot Tandem Catalysis: Green Synthesis of β-Pinene Derivatives with MgO and Mesoporous Catalysts. J. Catal., 438, 115698, DOI: 10.1016/j.jcat.2024.115698
  14. Gallego-Villada, L.A., Mäki-Arvela, P., Kumar, N., Alarcón, E.A., Vajglová, Z., Tirri, T., Angervo, I., Lassfolk, R., Lastusaari, M., Murzin, D.Y. (2024) Zeolite Y-Based Catalysts for Efficient Epoxidation of R-(+)-Limonene: Insights into the Structure-Activity Relationship. Microporous and Mesoporous Materials, 372, 113098, DOI: 10.1016/j.micromeso.2024.113098
  15. Shoodiqin, D.M., Musyarofah, M., Robiandi, F., Chairunnisa, R.C. (2024) Synthesis of Nano-Silica from Loa Kulu Rice Husk Using The Sol-Gel Method. Indonesian Physical Review, 7, 125–132, DOI: 10.29303/ipr.v7i1.280
  16. Nehan, P.Z.Z., Akbar, A.A., Karim, M.I.N., Fahriza, R.A., Zainuri, M. (2023) Synthesis of Silica from Rice Husk Waste for Hydrophobic Material as an Anti-Water Coating for Eyeglasses. Jurnal Fisika dan Aplikasinya, 19, 44, DOI: 10.12962/j24604682.v19i2.15721
  17. Shukla, S.K. (2020) Rice Husk Derived Adsorbents for Water Purification. In Green Materials for Wastewater Treatment; Naushad, Mu., Lichtfouse, E., Eds.; Springer International Publishing: Cham, pp. 131–148, ISBN 978-3-030-17724-9
  18. Khalifa, M., Ouertani, R., Hajji, M., Ezzaouia, H. (2019) Innovative Technology for the Production of High-Purity Sand Silica by Thermal Treatment and Acid Leaching Process. Hydrometallurgy, 185, 204–209, DOI: 10.1016/j.hydromet.2019.02.010
  19. Febriana, E., Mayangsari, W., Yudanto, S.D., Sulistiyono, E., Handayani, M., Firdiyono, F., Maksum, A., Prasetyo, A.B., Soedarsono, J.W. (2024) Novel Method for Minimizing Reactant in the Synthesis of Sodium Silicate Solution from Mixed-Phase Quartz-Amorphous SiO2. Case Studies in Chemical and Environmental Engineering, 9, 100656, DOI: 10.1016/j.cscee.2024.100656
  20. Geddes, C.D., Birch, D.J.S. (2000) Nanometre Resolution of Silica Hydrogel Formation Using Time-Resolved Fluorescence Anisotropy. J. Non Cryst. Solids, 270, 191–204, DOI: 10.1016/S0022-3093(99)00962-X
  21. Mahanti, M., Basak, D. (2014) Cu/ZnO Nanorods′ Hybrid Showing Enhanced Photoluminescence Properties Due to Surface Plasmon Resonance. J. Lumin., 145, 19–24. DOI: 10.1016/j.jlumin.2013.07.028
  22. Wang, Y., Li, H., Ren, Y., Chen, X., Xie, K., Sun, Y. (2018) Nanowire-Core/Double-Shell of NiMoO4@ C@ Ni3S2 Arrays on Ni Foam: Insights into Supercapacitive Performance and Capacitance Degradation. Nanotechnology, 29, 385402. DOI: 10.1088/1361-6528/aad0b5
  23. Shelke, V.R., Bhagade, S.S., Mandavgane, S.A. (2010) Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering & Catalysis, 5, 63–67. DOI: 10.9767/bcrec.5.2.793.63-67
  24. Yu, X., Williams, C.T. (2022) Recent Advances in the Applications of Mesoporous Silica in Heterogeneous Catalysis. Catal. Sci. Technol., 12, 5765–5794. DOI: 10.1039/D2CY00001F
  25. Vasiliadou, E.S., Eggenhuisen, T.M., Munnik, P., De Jongh, P.E., De Jong, K.P., Lemonidou, A.A. (2014) Synthesis and Performance of Highly Dispersed Cu/SiO2 Catalysts for the Hydrogenolysis of Glycerol. Appl. Catal. B Env., 145, 108–119. DOI: 10.1016/j.apcatb.2012.12.044
  26. Wang, F., Han, K., Xu, L., Yu, H., Shi, W. (2021) Ni/SiO2 Catalyst Prepared by Strong Electrostatic Adsorption for a Low-Temperature Methane Dry Reforming Reaction. Ind. Eng. Chem. Res., 60, 3324–3333. DOI: 10.1021/acs.iecr.0c06020
  27. Gulyaeva, Y., Alekseeva, M., Bulavchenko, O., Kremneva, A., Saraev, A., Gerasimov, E., Selishcheva, S., Kaichev, V., Yakovlev, V. (2021) Ni–Cu High-Loaded Sol–Gel Catalysts for Dehydrogenation of Liquid Organic Hydrides: Insights into Structural Features and Relationship with Catalytic Activity. Nanomaterials, 11, 2017, DOI: 10.3390/nano11082017/S1
  28. Wang, Y., Zhang, Z., Zhang, S., Wang, Y., Hu, S., Xiang, J., Wei, T., Niu, S., Hu, X. (2022) Correlations of Lewis Acidic Sites of Nickel Catalysts with the Properties of the Coke Formed in Steam Reforming of Acetic Acid. Journal of the Energy Institute, 101, 277–289, DOI: 10.1016/j.joei.2022.02.006
  29. Sharma, S.K., Hundal, G., Gupta, R. (2010) The Effect of Ligand Architecture on the Structure and Properties of Nickel and Copper Complexes of Amide-Based Macrocycles. Eur. J. Inorg. Chem., 2010, 621–636, DOI: 10.1002/EJIC.200900623
  30. Chen, W., Song, T., Tian, J., Wu, P., Li, X. (2019) An Efficient Cu-Based Catalyst for the Hydrogenation of Ethylene Carbonate to Ethylene Glycol and Methanol. Catal. Sci. Technol., 9, 6749–6759, DOI: 10.1039/C9CY01586H

Last update:

No citation recorded.

Last update:

No citation recorded.