skip to main content

Ultrasonic-Assisted Transesterification of Tripalmitin Using Limestone-Derived CaO Catalyst

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

2Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan

Received: 29 Jul 2025; Revised: 22 Sep 2025; Accepted: 23 Sep 2025; Available online: 1 Oct 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In producing palm oil-based biodiesel (fatty acid methyl esters) through the transesterification of triglycerides with methanol, a high-performance and straightforward catalyst is required. This research studies the synthesis and characterization of limestone-derived calcium oxide as a heterogeneous base catalyst for the transesterification of tripalmitin, a representation of palm oil triglycerides, with methanol to produce methyl palmitate. Limestone was calcined at 800 °C to produce CaO. The resulting catalyst was characterized using TGA, XRD, FTIR, SAA, and CO2-TPD. The catalytic performance was compared with that of commercial calcium oxide under optimal reaction conditions, namely 50 °C temperature, 60 min reaction time, and 30 mg catalyst mass. The results showed that limestone-derived CaO produced a higher yield (44.6%) than commercial CaO (32.3%). The kinetics study showed that the reaction followed a two-order pseudo-kinetic model with a reaction rate constant value of 0.1450 L mmol-1 min-1. Overall, limestone-derived CaO proved to be an effective, inexpensive, and environmentally friendly alternative catalyst in the production of triglyceride-based biodiesel. Furthermore, the modification of CaO to enhance the catalytic activity needs to be explored further. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Limestone; CaO; Transesterification; Tripalmitin
Funding: Ministry of Higher Education, Sciences and Technology, Republic of Indonesia under contract 2405/UN1/ DITLIT/Dit-Lit/PT.01.03/2025

Article Metrics:

  1. Amenaghawon, A.N., Amune, U.O., Ayere, J.E., Otuya, I.C., Eshiemogie, S.A., Ehiawaguan, E.I., Diemesor, G., Abuga, E.C., Oiwoh, O., Tijani, O., Oyefolu, P.K., Okoro, O.V., Shavandi, A., Anyalewechi, C.L., Elimian, E.A., Okedi, M.O., Okoduwa, I.G., Eshiemogie, S.O., Osazuwa, O., Darmokoesoemo, H., Kusuma, H.S. (2025). A comprehensive insight into the role of synthesis methods on the properties and performance of bio-derived heterogeneous catalysts for biodiesel production. Molecular Catalysis, 579(January), 115057. DOI: 10.1016/j.mcat.2025.115057
  2. Peng, B., Streimikiene, D., Agnusdei, G.P., Balezentis, T. (2024). Is sustainable energy development ensured in the EU agriculture? Structural shifts and the energy-related greenhouse gas emission intensity. Journal of Cleaner Production, 445(November 2023), 141325. DOI: 10.1016/j.jclepro.2024.141325
  3. Zhou, X., Patel, G., Mahalik, M.K., Gozgor, G. (2024). Effects of green energy and productivity on environmental sustainability in BRICS economies: The role of natural resources rents. Resources Policy, 92(March), 105026. DOI: 10.1016/j.resourpol.2024.105026
  4. Okoro, O.V., Preat, V., Karimi, K., Nie, L., Debaste, F., Shavandi, A. (2023). Optimizing the subcritical water valorization of insect (Hermetia illucens l.) farming waste for biodiesel production. Chemical Engineering Research and Design, 196, 413–426. DOI: 10.1016/j.cherd.2023.06.043
  5. Rozina, Ahmad, M., Zafar, M. (2023). Synthesis of green and non-toxic biodiesel from non-edible seed oil of Cichorium intybus using recyclable nanoparticles of MgO. Materials Today Communications, 35(February), 105611. DOI: 10.1016/j.mtcomm.2023.105611
  6. Ghosh, N., Patra, M., Halder, G. (2024). Current advances and future outlook of heterogeneous catalytic transesterification towards biodiesel production from waste cooking oil. Sustainable Energy and Fuels, 8(6), 1105–1152. DOI: 10.1039/d3se01564e
  7. Buchori, L., Istadi, I., Purwanto, P. (2016). Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 11(3), 606-430. DOI: http://doi.org/10.9767/bcrec.11.3.490.406-430
  8. Stavila, E., Yuliati, F., Adharis, A., Laksmono, J.A., Iqbal, M. (2023). Recent advances in synthesis of polymers based on palm oil and its fatty acids. RSC Advances, 13(22), 14747–14775. DOI: 10.1039/d3ra01913f
  9. Naseef, H.H., Tulaimat, R.H. (2025). Transesterification and esterification for biodiesel production: A comprehensive review of catalysts and palm oil feedstocks. Energy Conversion and Management: X, 26(February), 100931. DOI: 10.1016/j.ecmx.2025.100931
  10. Istadi, I., Riyanto, T., Khofiyanida, E., Buchori, L., Anggoro, D.D., Sumantri, I., Putro, B.H.S., Firnanda, A.S. (2021). Low-oxygenated biofuels production from palm oil through hydrocracking process using the enhanced Spent RFCC catalysts. Bioresource Technology Reports, 14(February), 100677. DOI: 10.1016/j.biteb.2021.100677
  11. Jayed, M.H., Masjuki, H.H., Saidur, R., Kalam, M.A., Jahirul, M.I. (2009). Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renewable and Sustainable Energy Reviews, 13(9), 2452–2462. DOI: 10.1016/j.rser.2009.06.023
  12. Anguebes-Franseschi, F., Córdova-Quiroz, A., Cerón-Bretón, J., Aguilar-Ucan, C., Castillo-Martínez, G., Cerón-Bretón, R., Ruíz-Marín, A., Montalvo-Romero, C. (2016). Optimization of Biodiesel Production from African Crude Palm Oil (Elaeis guineensis Jacq) with High Concentration of Free Fatty Acids by a Two-Step Transesterification Process. Open Journal of Ecology, 06(01), 13–21. DOI: 10.4236/oje.2016.61002
  13. Gu, J., Gao, Y., Xu, X., Wu, J., Yu, L., Xin, Z., Sun, S. (2018). Biodiesel production from palm oil and mixed dimethyl/diethyl carbonate with controllable cold flow properties. Fuel, 216 (July 2017), 781–786. DOI: 10.1016/j.fuel.2017.09.081
  14. De, A., Boxi, S.S. (2020). Application of Cu impregnated TiO2 as a heterogeneous nanocatalyst for the production of biodiesel from palm oil. Fuel, 265 (August 2019), 117019. DOI: 10.1016/j.fuel.2020.117019
  15. Zhang, P., Chen, X., Leng, Y., Dong, Y., Jiang, P., Fan, M. (2020). Biodiesel production from palm oil and methanol via zeolite derived catalyst as a phase boundary catalyst: An optimization study by using response surface methodology. Fuel, 272 (March), 117680. DOI: 10.1016/j.fuel.2020.117680
  16. Ajala, E.O., Ajala, M.A., Odetoye, T.E., Aderibigbe, F.A., Osanyinpeju, H.O., Ayanshola, M.A. (2021). Thermal modification of chicken eggshell as heterogeneous catalyst for palm kernel biodiesel production in an optimization process. Biomass Conversion and Biorefinery, 11(6), 2599–2615. DOI: 10.1007/s13399-020-00636-x
  17. Mukhtar, A., Saqib, S., Lin, H., Hassan Shah, M.U., Ullah, S., Younas, M., Rezakazemi, M., Ibrahim, M., Mahmood, A., Asif, S., Bokhari, A. (2022). Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable and Sustainable Energy Reviews, 157 (December 2021), 112012. DOI: 10.1016/j.rser.2021.112012
  18. Sisca, V., Deska, A., Syukri, Zilfa, Jamarun, N. (2021). Synthesis and characterization of CaO limestone from lintau buo supported by TiO2 as a heterogeneous catalyst in the production of biodiesel. Indonesian Journal of Chemistry, 21(4), 979–989. DOI: 10.22146/ijc.64675
  19. Krishnamurthy, K.N., Sridhara, S.N., Ananda Kumar, C.S. (2020). Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renewable Energy, 146, 280–296. DOI: 10.1016/j.renene.2019.06.161
  20. Bargole, S.S., Singh, P.K., George, S., Saharan, V.K. (2021). Valorisation of low fatty acid content waste cooking oil into biodiesel through transesterification using a basic heterogeneous calcium-based catalyst. Biomass and Bioenergy, 146 (September 2020), 105984. DOI: 10.1016/j.biombioe.2021.105984
  21. Tan, Y.H., Abdullah, M.O., Kansedo, J., Mubarak, N.M., Chan, Y.S., Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 139(November 2014), 696–706. DOI: 10.1016/j.renene.2019.02.110
  22. Yean, C.H., Das, V.G.K. (2000). Studies on the transesterification of glycerides: I. The methanolysis of tripalmitin catalysed by diorganotin(IV) compounds. Applied Organometallic Chemistry, 14(6), 304–315. DOI: 10.1002/(SICI)1099-0739(200006)14:6<304::AID-AOC985>3.0.CO;2-N
  23. Liu, Y., Lotero, E., Goodwin, J.G., Mo, X. (2007). Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts. Applied Catalysis A: General, 331(1), 138–148. DOI: 10.1016/j.apcata.2007.07.038
  24. Maruyama, H., Seki, H. (2022). Esterification of tripalmitin using calcined scallop shell as a heterogeneous basic catalyst. Asia-Pacific Journal of Chemical Engineering, 18(2). DOI: 10.1002/apj.2870
  25. Wang, Y., He, C., Li, G., Liu, X., Liu, L., Jiao, Y. (2025). Sustainable hollow spherical CaO derived from waste eggshells for transesterification of lard: Catalytic characterization, performance and thermodynamics. Renewable Energy, 250 (December 2024), 123302. DOI: 10.1016/j.renene.2025.123302
  26. Wong, Y.C., Tan, Y.P., Taufiq-Yap, Y.H., Ramli, I., Tee, H.S. (2015). Biodiesel production via transesterification of palm oil by using CaO-CeO2 mixed oxide catalysts. Fuel, 162, 288–293. DOI: 10.1016/j.fuel.2015.09.012
  27. Basumatary, S.F., Brahma, S., Hoque, M., Das, B.K., Selvaraj, M., Brahma, S., Basumatary, S. (2023). Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources, 1(3), 100032. DOI: 10.1016/j.gerr.2023.100032
  28. Pranyoto, N., Susanti, Y.D., Ondang, I.J., Angkawijaya, A.E., Soetaredjo, F.E., Santoso, S.P., Yuliana, M., Ismadji, S., Hartono, S.B. (2022). Facile Synthesis of Silane-Modified Mixed Metal Oxide as Catalyst in Transesterification Processes. Nanomaterials, 12(2). DOI: 10.3390/nano12020245
  29. Jayaprabakar, J., Karthikeyan, A., Vijai Anand, K., Arunkumar, T., Anbazhaghan, N., Rangasamy, G. (2023). Synthesis and characterization of calcium oxide nano particles obtained from biowaste and its combustion characteristics in a biodiesel operated compression ignition engine. Fuel, 350(May), 128839. DOI: 10.1016/j.fuel.2023.128839
  30. Gunasekaran, S., Anbalagan, G., Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37(9), 892–899. DOI: 10.1002/jrs.1518
  31. Amesho, K.T.T., Lin, Y.C., Chen, C.E., Cheng, P.C., Shangdiar, S. (2022). Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique. Fuel, 323 (February), 123876. DOI: 10.1016/j.fuel.2022.123876
  32. Hernández-Martínez, M.A., Rodriguez, J.A., Chavez-Esquivel, G., Ángeles-Beltrán, D., Tavizón-Pozos, J.A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4), 100033. DOI: 10.1016/j.nxmate.2023.100033
  33. Ribeiro, P.B., de Freitas, V.O., Machry, K., Muniz, A.R.C., da Rosa, G.S. (2019). Evaluation of the potential of coal fly ash produced by gasification as hexavalent chromium adsorbent. Environmental Science and Pollution Research, 26(28), 28603–28613. DOI: 10.1007/s11356-018-3852-7
  34. Render, D., Samuel, T., King, H., Vig, M., Jeelani, S., Babu, R.J., Rangari, V. (2016). Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. Journal of Nanomaterials, 2016. DOI: 10.1155/2016/3170248
  35. Madhu, B.J., Bhagyalakshmi, H., Shruthi, B., Veerabhadraswamy, M. (2021). Structural, AC conductivity, dielectric and catalytic behavior of calcium oxide nanoparticles derived from waste eggshells. SN Applied Sciences, 3(6). DOI: 10.1007/s42452-021-04607-3
  36. Teo, S.H., Taufiq-Yap, Y.H., Rashid, U., Islam, A. (2015). Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Advances, 5(6), 4266–4276. DOI: 10.1039/c4ra11936c
  37. Ashine, F., Kiflie, Z., Prabhu, S.V., Tizazu, B.Z., Varadharajan, V., Rajasimman, M., Joo, S.W., Vasseghian, Y., Jayakumar, M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332(P2), 126166. DOI: 10.1016/j.fuel.2022.126166
  38. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  39. Pudi, S.M., Biswas, P., Kumar, S. (2016). Selective hydrogenolysis of glycerol to 1,2-propanediol over highly active copper-magnesia catalysts: Reaction parameter, catalyst stability and mechanism study. Journal of Chemical Technology and Biotechnology, 91(7), 2063–2075. DOI: 10.1002/jctb.4802
  40. Hájek, M., Vávra, A., Skopal, F., Straková, A., Douda, M. (2020). The description of catalyst behaviour during transesterification of rapeseed oil – Formation of micellar emulsion. Renewable Energy, 159, 938–943. DOI: 10.1016/j.renene.2020.06.082
  41. Boro, J., Konwar, L.J., Deka, D. (2014). Transesterification of non edible feedstock with lithium incorporated egg shell derived CaO for biodiesel production. Fuel Processing Technology, 122, 72–78. DOI: 10.1016/j.fuproc.2014.01.022
  42. Zabeti, M., Wan Daud, W.M.A., Aroua, M.K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770–777. DOI: 10.1016/j.fuproc.2009.03.010
  43. Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaría, J., Fierro, J.L.G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3), 317–326. DOI: 10.1016/j.apcatb.2006.12.017
  44. Maruyama, H., Seki, H. (2022). Esterification of tripalmitin using calcined scallop shell as a heterogeneous basic catalyst. Asia-Pacific Journal of Chemical Engineering, 18(2) DOI: 10.1002/apj.2870
  45. Aniagor, C.O., Anekwe-Nwekeaku, O.J., Tabugbo, B.I. (2025). Synthesis of biodiesel from Cyperus esculentus seed oil: Investigation of temperature effect on the transesterification kinetics and bond structure. Biomass and Bioenergy, 197 (March), 107766. DOI: 10.1016/j.biombioe.2025.107766
  46. Shan, R., Lu, L., Shi, Y., Yuan, H., Shi, J. (2018). Catalysts from renewable resources for biodiesel production. Energy Conversion and Management, 178(July), 277–289. DOI: 10.1016/j.enconman.2018.10.032

Last update:

No citation recorded.

Last update:

No citation recorded.