skip to main content

Photocatalytic Degradation of Methyl Orange Using TiO2 - Coated Cordierite Substrates: A Comparison of Dip-Coating and Spray-Coating Methods

1School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

2School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam

Received: 20 May 2025; Revised: 3 Sep 2025; Accepted: 6 Sep 2025; Available online: 11 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, the calcination temperature of TiO2 nanoparticles was investigated at 300, 350, 400, and 450 °C. The results indicated that 400 °C was the optimal calcination temperature, yielding the highest amount of synthesized TiO2 nanoparticles remaining in the anatase phase (97.44 %). TiO2 nanoparticles were coated on cordierite using two methods: spray coating and dip coating. Their characteristics were analyzed and evaluated utilizing several modern techniques. Additionally, their photocatalytic and recovery capabilities were assessed based on methylene orange (MO) degradation efficiency. The spray coating method allowed the TiO2 nanoparticles to evenly cover the cordierite surface, resulting in the highest MO degradation efficiency and best recovery ability. The MO degradation efficiency remained at 83.07 % after 5 reuse cycles. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Titanium oxide; Methyl Orange; Photocatalytic; Coating
Funding: Hanoi University of Science and Technology, Laboratory of Catalysis under the RoHan Project

Article Metrics:

  1. Nguyen, T.H., Thi, M.L.V., Tran, T.P., Vu, A.-T. (2024). Modificstion of Porous Silica from Rice Husk with EDTA to Remove Pb2+ Ions in an Aqueous Environments. Valorization of Agricultural Residues, 60, 60-62, DOI: 10.14279/depositonce-21556
  2. Nguyen, T.H., Vu, A.-T. (2025). Preparation of novel B/ZnO/zeolite nanocomposites by simple combustion method for enhanced dye removal in an aqueous environment. Nanotechnology, 36(10), 105703. DOI: 10.1088/1361-6528/ada29b
  3. Vu, A.-T., Nguyen, T.H., Nguyen, T.H. (2023). Preparation of carnation-like Ag-ZnO composites for enhanced photocatalysis under visible light. Nanotechnology, 34(27), 275602. DOI: 10.1088/1361-6528/acca24
  4. Nguyen, T.H., Mai, T.T., Tran, T.P., Thi, C.L.T., Thi, C.V.D., Thi, M.L.V., Nguyen, M.V., Nguyen, T.H., Vu, A.-T. (2024). Studying the Nanocomposite B/ZnO for Photocatalysis: Facile Control the Morphology via Sol-gel Method and Antibiotic Degradation Investigations. Journal of Sol-Gel Science and Technology, 110(2), 319-332. DOI: 10.21203/rs.3.rs-3901804/v1
  5. Nguyen, T.H., Nguyen, V., Vu, A. (2024). Synthesis of CS-Fe3O4/GO nanocomposite for adsorption of heavy metal in aqueous environment. Nanotechnology. 35(34), 345705. DOI: 10.1088/1361-6528/ad50e3
  6. Nguyen, T.H., Vu, T.C., Le, T.P., Nguyen, T.H., Do, X.T., Vu, A.-T. (2024). Synthesis of Mesoporous ZnO• SiO2 Nanocomposite from Rice Husk for Enhanced Degradation of Organic Substances Including Janus Green B under Visible Light. Bulletin of Chemical Reaction Engineering & Catalysis, 19 (3), 429-441. DOI: 10.9767/bcrec.20175
  7. Nguyen, T.H., Vo, Q.L., Nguyen, N.T., Le, D.T., Tran, T.T.H., Nguyen, M.V., Le, V.D., Tran, V.H., Vu, A.-T. (2024). Fabrication of Graphene Oxide for Application in Removing Tetracycline Hydrochloride in Aqueous Solution. JST: Engineering Technology for Sustainable Development, 34(3), 8-15. DOI: 10.51316/jst.175.etsd.2024.34.3.2
  8. Nguyen, T.H., Nguyen, T.H., Nguyen, T.N., Nghiem, X.S., Le Minh, T., Vu, A.-T. (2025). Preparation of Functional Materials Based on Activated Carbon from Bagasse and Its Application in Pb2+ Adsorption in an Aqueous Environment. Materials Today Communications, 47, 113158. DOI: 10.1016/j.mtcomm.2025.113158
  9. Nguyen, T.M., Dao, T.C.V., Nguyen, T.H., Vu, T.C., Le, T.P., Nguyen, T.H., Vu, A.-T. (2024). Production of Porous Silica from Rice Husk Using Cetyltrimethylammonium Bromide to Remove Dyes in Aqueous Solution. JST: Engineering Technology for Sustainable Development, 34(4), 9-16. DOI: 10.51316/jst.177.etsd.2024.34.4.2
  10. Huong, N.T., Linh, V.Q., Thinh, N.N., Huyen, T.T.T., Viet, N.M., Hoang, T.V., Vu, A.-T. (2024). Assessment of the adsorption capacity tetracycline hydrochloride antibiotic in wastewater of graphene oxide materials. Vietnam Journal of Catalysis and Adsorption, 13(1), 87-92. DOI: 10.62239/jca.2024.014
  11. Nguyen, V.D., Nguyen, M.T., Vu, A.-T. (2024). Production of green biosorbent from chemically modified moringa leaves for enhanced removal of heavy metal in aqueous environment. Biomass Conversion Biorefinery, 15 (9), 1-21. DOI: 10.1007/s13399-024-06164-2
  12. Tuan, V.A., Huong, N.T., Viet, N.M. (2024). Novel B/ZnO material for enhanced degradation of tetracycline hydrochloride in an aqueous environment under visible light. HaUI Journal of Science and Technology, 60(3), 43-50, DOI: http://doi.org/10.57001/huih5804.2024.096
  13. Vu, A.-T., Minh, P.Q., Anh, N.T.T., Vi, Đ.T.C., Hằng, N.T.B., Hương, N.T. (2024). Tổng hợp vật liệu Ag/ZnO/g-C3N4 bằng phương pháp nung đơn giản để loại bỏ kháng sinh tetracycline hydrochloride trong môi trường nước. Journal of Control Vaccines Biologicals, 4(1). DOI: 10.56086/jcvb.v4i1.142
  14. Vu, A.-T., Nguyen, M.V., Nguyen, T.H. (2024). Fabrication of ethylenediaminetetraacetic modified porous silica composite from rice husk for enhancing the remove of Pb2+ from aqueous solution. Results in Materials, 21, 100525. DOI: 10.1016/j.rinma.2023.100525
  15. Hassani, A., Motlagh, P.Y., Khataee, A. (2023). Hybrids layered double hydroxides as catalysts for the removal of synthetic dyes from wastewater, in Current Developments in Bioengineering and Biotechnology, 111-153. DOI: 10.1016/B978-0-323-91235-8.00020-6
  16. Hamdaoui, O. (2024) Innovative and Hybrid Advanced Oxidation Processes for Water Treatment. Elsevier
  17. Hassani, A., Krishnan, S., Scaria, J., Eghbali, P., Nidheesh, P. (2021). Z-scheme photocatalysts for visible-light-driven pollutants degradation: a review on recent advancements. Current Opinion in Solid State Materials Science, 25(5), 100941. DOI: 10.1016/j.cossms.2021.100941
  18. Chin, S., Park, E., Kim, M., Jurng, J. (2010). Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process. Powder Technology, 201 (2), 171-176. DOI: 10.1016/j.powtec.2010.03.034
  19. Malakootian, M., Nasiri, A., Amiri Gharaghani, M. (2020). Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chemical Engineering Communications, 207(1), 56-72. DOI: 10.1080/00986445.2019.1573168
  20. Nguyen, T.H., Vu, A.-T. (2022). Preparation of B/ZnO Nanocomposite by Simple Mechanical Combustion Method for Removal of Antibiotics in Aqueous Environments. Bulletin of Chemical Reaction Engineering & Catalysis, 17 (4), 786-797. DOI: 10.9767/bcrec.17.4.16090.786-797
  21. Nguyen, T.H., Cong, T.A.N., Vu, A.-T. (2023). Synthesis of Carnation-Like ZnO for Photocatalytic Degradation of Antibiotics, Including Tetracycline Hydrochloride. Environmental Engineering Science. 40(8), 329-339. DOI: 10.1089/ees.2023.0034
  22. Nguyen, T.H., Vu, A.-T. (2023). Investigation of enhanced degradation of the antibiotic under visible in novel B/ZnO/TiO2 nanocomposite and its electrical energy consumption. Nanotechnology, 35(1), 015709. DOI: 10.1088/1361-6528/acffce
  23. Kim, M.G., Kang, J.M., Lee, J.E., Kim, K.S., Kim, K.H., Cho, M., Lee, S.G. (2021). Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles. ACS Omega, 6(16), 10668-10678. DOI: 10.1021/acsomega.1c00043
  24. Lal, M., Sharma, P., Ram, C. (2021). Calcination temperature effect on titanium oxide (TiO2) nanoparticles synthesis. Optik, 241, 166934. DOI: 10.1016/j.ijleo.2021.166934
  25. Zhang, Z., Wang, C.-C., Zakaria, R., Ying, J.Y. (1998). Role of particle size in nanocrystalline TiO2-based photocatalysts. The Journal of Physical Chemistry B, 102(52), 10871-10878. DOI: 10.1021/jp982948+
  26. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry Photobiology A: Chemistry, 400, 112665. DOI: 10.1016/j.jphotochem.2020.112665
  27. Arab Chamjangali, M., Bagherian, G., Bahramian, B., Fahimi Rad, B. (2015). Synthesis and application of multiple rods gold–zinc oxide nanostructures in the photocatalytic degradation of methyl orange. International Journal of Environmental Science Technology, 12, 151-160. DOI: 10.1007/s13762-014-0669-x
  28. Nasrollahzadeh, M.S., Hadavifar, M., Ghasemi, S.S., Arab Chamjangali, M. (2018). Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Applied Water Science, 8, 1-12. DOI: 10.1007/s13201-018-0750-6
  29. Nguyen, C.H., Fu, C.-C., Juang, R.-S. (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413-427. DOI: 10.1016/j.jclepro.2018.08.110
  30. Nguyen, V.N., Tran, D.T., Nguyen, M.T., Le, T.T.T., Ha, M.N., Nguyen, M.V., Pham, T.D. (2018). Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites. Research on Chemical Intermediates, 44, 3081-3095. DOI: 10.1007/s11164-018-3294-3
  31. Nguyen, L.T., Nguyen, L.T., Duong, A.T., Nguyen, B.D., Quang Hai, N., Chu, V.H., Nguyen, T.D., Bach, L.G. (2019). Preparation, characterization and photocatalytic activity of La-doped zinc oxide nanoparticles. Materials, 12(8), 1195. DOI: 10.3390/ma12081195
  32. Zhang, L., Qin, M., Yu, Y., Zhang, M., Zhao, X., Qian, J., Wu, H. (2019). Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange. Journal of Materials Science: Materials in Electronics, 30, 5158-5169. DOI: 10.1007/s10854-019-00814-2
  33. Janani, F., Khiar, H., Taoufik, N., Elhalil, A., Sadiq, M., Puga, A., Mansouri, S., Barka, N. (2021). ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Materials Today Chemistry, 21, 100495. DOI: 10.1016/j.mtchem.2021.100495

Last update:

No citation recorded.

Last update:

No citation recorded.