skip to main content

Driving Photocatalytic Efficiency through Controlled Cobalt–Iron and Cobalt–Nickel Ratios for Methylene Blue Degradation

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 9 Jun 2025; Revised: 10 Sep 2025; Accepted: 11 Sep 2025; Available online: 18 Sep 2025; Published: 26 Dec 2025.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study explores the development of nanostructured photocatalytic materials based on cobalt–iron (CoFe1-2) and cobalt–nickel (CoNi1-1) systems for the degradation of methylene blue, a persistent organic pollutant commonly found in textile wastewater. As the textile industry contributes significantly to environmental pollution through the discharge of recalcitrant dyes, this work aims to offer an effective and sustainable solution via visible-light-driven photocatalysis. The synthesis strategy employed a hard-template approach using mesoporous silica-gelatin composite (SPG-20), prepared from a mixture of P123 and gelatin under acidic conditions. Following hydrothermal treatment and calcination, the SPG-20 template was acid-activated to enhance surface reactivity. Metal precursors—Co(NO₃)₂.6H₂O with either Fe(NO₃)₃.9H₂O or Ni(NO₃)₂.6H₂O—were infiltrated into the template with citric acid as a chelating and carbon-forming agent. The composite underwent controlled thermal treatment to embed metal species into a confined carbon matrix, followed by alkaline etching to remove the silica scaffold and yield CoFe1-2 and CoNi1-1 carbon nanostructures. Comprehensive characterizations, including XRD, FTIR, BET, UV-DRS, and UV–VIS spectroscopy, revealed that the materials exhibited nanocrystalline domains with low crystallinity and high specific surface area, favorable for photocatalytic activity. BET analysis indicated a greater surface area in CoFe1-2 (104.526 m²/g) than in CoNi1-1 (83.160 m²/g), correlating with a higher number of available active sites. The band gap of CoFe1-2 (1.180 eV) supports efficient visible-light absorption, which, coupled with its higher microporosity, enables superior methylene blue degradation (85% within 90 minutes) compared to CoNi1-1 (75%). Control experiments in the absence of light showed minimal degradation, confirming that the reaction is photocatalytic in nature. Adsorption kinetics followed a pseudo-first-order model, with CoFe1-2 also exhibiting a higher adsorption capacity (171.184 mg/g). These findings demonstrate the potential of template-assisted synthesis in producing tunable, high-performance photocatalysts for practical applications in sustainable textile wastewater treatment. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Cobalt; Iron; Nickel; Photocatalysist; Methylene Blue
Funding: Universitas Sebelas Maret under contract 369/UN27.22/PT.01.03/2025

Article Metrics:

  1. Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S., Rajak, P. (2024). Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353(October 2023), 120103. DOI: 10.1016/j.jenvman.2024.120103
  2. Periyasamy, A.P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability (Switzerland), 16(2). DOI: 10.3390/su16020495
  3. Islam, M., Rakha, A., Nawaj, J., Mondal, H. (2025). A critical review on textile dye-containing wastewater : Ecotoxicity , health risks , and remediation strategies for environmental safety. Cleaner Chemical Engineering, 11(January), 100165. DOI: 10.1016/j.clce.2025.100165
  4. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678. DOI: 10.1016/j.rineng.2022.100678
  5. Ahmadi, S., Igwegbe, C.A. (2020). Removal of Methylene Blue on Zinc Oxide Nanoparticles: Nonlinear and Linear Adsorption Isotherms and Kinetics Study. Sigma Journal of Engineering and Natural Sciences, 38(1), 289–303
  6. Nabilah, B., Purnomo, A.S., Prasetyoko, D., Rohmah, A.A. (2023). Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix. Arabian Journal of Chemistry, 16(8), 104940. DOI: 10.1016/j.arabjc.2023.104940
  7. Hu, Y., Wang, H., Ren, X., Wu, F., Liu, G., Zhang, S., Luo, H., Fang, L. (2024). Enhancing Methylene Blue Adsorption Performance of Ti3C2Tx@Sodium Alginate Foam Through Pore Structure Regulation. Nanomaterials, 14(23) DOI: 10.3390/nano14231925
  8. Swaminaathan, P., Saravanan, A., Yaashikaa, P.R., Vickram, A.S. (2024). Recent advances in photocatalytic degradation of persistent organic pollutants: Mechanisms, challenges, and modification strategies. Sustainable Chemistry for the Environment, 8(September), 100171. DOI: 10.1016/j.scenv.2024.100171
  9. Balu, S., Ganapathy, D., Arya, S., Atchudan, R., Sundramoorthy, A.K. (2024). Advanced photocatalytic materials based degradation of micropollutants and their use in hydrogen production - a review. RSC Advances, 14(20), 14392–14424. DOI: 10.1039/d4ra01307g
  10. Rahman, M., Shaheen, S., Ahmad, T. (2025). Photocatalytic transformation of organic pollutants and remediation strategies of carbon emissions and nitrogen fixation in inland water. Materials Today Catalysis, 9(April), 100103. DOI: 10.1016/j.mtcata.2025.100103
  11. Chen, K., Qu, F., Huang, Y., Cai, J., Wu, F., Li, W. (2024). Advancing photocatalytic concrete technologies in design, performance and application for a sustainable future. Advanced Nanocomposites, 1(1), 180–200. DOI: 10.1016/j.adna.2024.05.002
  12. Iyyappan, J., Gaddala, B., Gnanasekaran, R., Gopinath, M., Yuvaraj, D., Kumar, V. (2024). Critical review on wastewater treatment using photo catalytic advanced oxidation process: Role of photocatalytic materials, reactor design and kinetics. Case Studies in Chemical and Environmental Engineering, 9(December 2023), 100599. DOI: 10.1016/j.cscee.2023.100599
  13. Yang, T., Zhang, H., Pang, B., Wong, J.W.C. (2025). Recent Advances in Transition Metal-Based Metal-Organic Frameworks for Hydrogen Production. Small Science, 2400446. DOI: 10.1002/smsc.202400446
  14. Li, X.P., Huang, C., Han, W.K., Ouyang, T., Liu, Z.Q. (2021). Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 32(9), 2597–2616. DOI: 10.1016/j.cclet.2021.01.047
  15. Guo, S., Zheng, L., Wang, X., Yang, H., Wang, T., Li, L., Zhang, Y., Zhao, G., Li, T. (2024). Trace Iron-Doped Nickel-Cobalt selenide with rich heterointerfaces for efficient overall water splitting at high current densities. Journal of Colloid and Interface Science, 674(April), 902–912. DOI: 10.1016/j.jcis.2024.06.226
  16. Gatou, M.A., Syrrakou, A., Lagopati, N., Pavlatou, E.A. (2024). Photocatalytic TiO2-Based Nanostructures as a Promising Material for Diverse Environmental Applications: A Review. Reactions, 5(1), 135–194. DOI: 10.3390/reactions5010007
  17. Rizqi Maulana, M.A., Aisyaturridha, Salmah Cholilah, Dwi Arista, F., Bagus Nur Listiyono (2023). Nickel Oxide (NiO) Thin Film Synthesis via Electrodeposition for Methylene Blue Photodegradation. Chemistry and Materials, 2(3), 61–66. DOI: 10.56425/cma.v2i3.62
  18. Revathi, J., Abel, M.J., Archana, V., Sumithra, T., Thiruneelakandan, R., Joseph prince, J. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 587, 412136. DOI: 10.1016/j.physb.2020.412136
  19. Kalam, A., Al-Sehemi, A.G., Assiri, M., Du, G., Ahmad, T., Ahmad, I., Pannipara, M. (2018). Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results in Physics, 8, 1046–1053. DOI: 10.1016/j.rinp.2018.01.045
  20. Kibona, T.E. (2020). Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes. Journal of Solid State Electrochemistry, 24(7), 1587–1598. DOI: 10.1007/s10008-020-04673-4
  21. Safdar, A., Mohamed, H.E.A., Muhaymin, A., Hkiri, K., Matinise, N., Maaza, M. (2024). Biogenic synthesis of nickel cobaltite nanoparticles via a green route for enhancing the photocatalytic and electrochemical performances. Scientific Reports, 14(1), 1–17. DOI: 10.1038/s41598-024-68574-6
  22. Jayan, G., Elias, L., Anil, A., Bhagya, T.C., Shibli, S.M.A. (2024). Step-by-step tuning of morphology and band gap of ZnS/MoS2 photocatalyst for enhanced visible light to hydrogen fuel conversion. International Journal of Hydrogen Energy, 51(PC), 1375–1386. DOI: 10.1016/j.ijhydene.2023.11.102
  23. Ansari, A.S., Azzahra, G., Nugroho, F.G., Mujtaba, M.M., Ahmed, A.T.A. (2025). Oxides and Metal Oxide/Carbon Hybrid Materials for Efficient Photocatalytic Organic Pollutant Removal. Catalysts, 15(2), 1–43. DOI: 10.3390/catal15020134
  24. Kamakshi, T., Sundari, G.S. (2020) Photocatalytic Degradation of Methylene Blue via Cobalt Doped Fe3O4 Nanoparticles. Asian J. Chem., 32, 1413–1420. DOI: 10.14233/ajchem.2020.22621
  25. Chen, L., Ren, X., Alharbi, N.S., Chen, C. (2021). Fabrication of a novel Co/Ni-MOFs@BiOI composite with boosting photocatalytic degradation of methylene blue under visible light. Journal of Environmental Chemical Engineering, 9(5), 106194. DOI: 10.1016/j.jece.2021.106194
  26. Istiqomah, N.I., Larasati, D.A., Hanifah, A.N.A., Olivia, L., Oshima, D., Kato, T., Suharyadi, E. (2023). Photocatalytic Removal of Methylene Blue Dye Using CoZnFe2O4/SiO2 Magnetic Nanoparticles. Key Engineering Materials, 940, 55–64. DOI: 10.4028/p-o402y2
  27. Lenni, N., Lubis, R.Y., Masthura. (2025). Material Nanopartikel Fotokatalis Fe3o4/Sio2/Tio2 Untuk Degradasi Methylene Blue. Jurnal Rekayasa Material, Manufaktur dan Energi, 8(1), 59–65. DOI: 10.30596/rmme.v8i1.21752
  28. Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O., Nikolic, M. V. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method: Methylene blue degradation with Fe2TiO5. Royal Society Open Science, 7(9). DOI: 10.1098/rsos.200708
  29. Murugesan, A., Loganathan, M., Senthil Kumar, P., Vo, D.V.N. (2021). Cobalt and nickel oxides supported activated carbon as an effective photocatalysts for the degradation Methylene Blue dye from aquatic environment. Sustainable Chemistry and Pharmacy, 21(December 2020), 100406. DOI: 10.1016/j.scp.2021.100406
  30. Puspitasari, P., Budi, L.S. (2020). Physical and magnetic properties comparison of cobalt ferrite nanopowder using sol-gel and sonochemical methods. International Journal of Engineering, Transactions B: Applications, 33(5), 877–884. DOI: 10.5829/IJE.2020.33.05B.20
  31. Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. DOI: 10.1016/j.arabjc.2017.05.011
  32. Setiadi, E.A., Shabrina, N., Budi Utami, H.R., Fahmi, N.F., Kato, T., Iwata, S., Suharyadi, E. (2016). Sintesis Nanopartikel Cobalt Ferrite (CoFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. Indonesian Journal of Applied Physics, 3(01), 55. DOI: 10.13057/ijap.v3i01.1216
  33. Cai, Z., Park, J., Park, S. (2023). Synthesis of Flower-like ZnO and Its Enhanced Sensitivity towards NO2 Gas Detection at Room Temperature. Chemosensors, 11(6). DOI: 10.3390/chemosensors11060322
  34. Jdidi, A.R., Nouira, W., Selmi, A., Drissi, N., Aissa, M., Hcini, S., Gassoumi, M. (2025). Impact of Calcination Temperature on the Properties and Photocatalytic Efficiency of Cd0.6Mg0.2Cu0.2Fe2O4 Spinel Ferrites Synthesized via the Sol–Gel Method. Crystals, 15(5). DOI: 10.3390/cryst15050457
  35. Suaib, S., Aritonang, H., Koleangan, H.S.J. (2020). Sintesis Nanopartikel Cobalt Ferrite (CoFe2O4) Dengan Metode Kopresipitasi dan Aplikasinya Sebagai Fotokatalis. Chemistry Progress, 12(1), 49–53. DOI: 10.35799/cp.12.1.2019.27922
  36. Zuliantoni, Z., Suprapto, W., Setyarini, P.H., Gapsari, F. (2022). Extraction and characterization of snail shell waste hydroxyapatite. Results in Engineering, 14(February), 100390. DOI: 10.1016/j.rineng.2022.100390
  37. Tang, H., Wang, W., Zhou, J., Li, T., Shu, Z. (2022). Optimizing the Crystallinity of Heptazine-Based Crystalline Carbon Nitride by Regulating Temperature for Enhanced Photocatalytic H2 Evolution. Journal of Nanomaterials, 4923588. DOI: 10.1155/2022/4923588
  38. Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J. (2010). TiO2−Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2−Graphene Truly Different from Other TiO2−Carbon Composite Materials?. ACS Nano, 4(12), 7303–7314. DOI: 10.1021/nn1024219
  39. Wang, Y., Wang, X., Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie - International Edition, 51(1), 68–89. DOI: 10.1002/anie.201101182
  40. Tripathy, S.R., Baral, S.S. (2025). Defect Engineering in Semiconductor Photocatalysts: Enhancing Photocatalytic Activity for Green Energy Production. Advanced Energy and Sustainability Research, 2500110. DOI: 10.1002/aesr.202500110
  41. Guo, L., Gao, J., Huang, Q., Wang, X., Li, Z., Li, M., Zhou, W. (2024). Element engineering in graphitic carbon nitride photocatalysts. Renewable and Sustainable Energy Reviews, 199. DOI: 10.1016/j.rser.2024.114482
  42. Thirumoolan, D., Ragupathy, S., Renukadevi, S., Rajkumar, P., Rai, R.S., Saravana Kumar, R.M., Hasan, I., Durai, M., Ahn, Y.H. (2024). Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 448, 115300. DOI: 10.1016/j.jphotochem.2023.115300
  43. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. DOI: 10.17509/ijost.v4i1.15806
  44. Almutairi, T.S. (2024). Unveiling the Impact of Spin and Cation Dynamics on Raman Spectroscopy in Co-Ferrite. ACS Physical Chemistry Au. 5, 2, 171–182. DOI: 10.1021/acsphyschemau.4c00088
  45. El-Masry, M.M., Arman, M.M. (2025). Cobalt, nickel and zinc spinel ferrites with high transmittance and UV-blocking for advanced optical applications. Scientific Reports, 15(1), 1–17. DOI: 10.1038/s41598-025-99604-6
  46. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C. (2011). Synthesis and characterization of nickel ferrite magnetic nanoparticles. Materials Research Bulletin, 46(12), 2208–2211. DOI: 10.1016/j.materresbull.2011.09.009
  47. Palade, P., Comanescu, C., Kuncser, A., Berger, D., Matei, C., Iacob, N., Kuncser, V. (2020). Mesoporous cobalt ferrite nanosystems obtained by surfactant-assisted hydrothermal method: Tuning morpho-structural and magnetic properties via pH-variation. Nanomaterials, 10(3), 1–18. DOI: 10.3390/nano10030476
  48. Chen, P.-K., Lai, N.-C., Ho, C.-H., Hu, Y.-W., Lee, J.-F., Yang, C.-M. (2013). New Synthesis of MCM-48 Nanospheres and Facile Replication to Mesoporous Platinum Nanospheres as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 25 (21), 4269–4277. DOI: 10.1021/cm402349f
  49. Raja, P.M. V, Barron, A.R. (1934). Physical methods in chemistry. Nature, 134(3384), 366–367. DOI: 10.1002/jctb.5000533702
  50. Baldovino-Medrano, V.G., Niño-Celis, V., Giraldo, R.I. (2023). Systematic Analysis of the Nitrogen Adsorption–Desorption Isotherms Recorded for a Series of Materials Based on Microporous–Mesoporous Amorphous Aluminosilicates Using Classical Methods. Journal of Chemical & Engineering Data, 68(9), 2512–2528. DOI: 10.1021/acs.jced.3c00257
  51. Irwansyah, F.S., Amal, A.I., Diyanthi, E.W., Hadisantoso, E.P., Noviyanti, A.R., Eddy, D.R., Risdiana, R. (2024). How to Read and Determine the Specific Surface Area of Inorganic Materials using the Brunauer-Emmett-Teller (BET) Method. ASEAN Journal of Science and Engineering, 4(1), 61–70. DOI: 10.17509/ajse.v4i1.60748
  52. Munawaroh, F., Masdya, Y., Baqiya, M.A., Triwikantoro, T. (2024). Indonesian Physical Review. Indonesian Physical Review, 7(2), 250–258. DOI: 10.29303/ipr.v7i2.313
  53. Sing, K.S.W., Williams, R.T. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science and Technology, 22(10), 773–782. DOI: 10.1260/0263617053499032
  54. Holinsworth, B.S., Mazumdar, D., Sims, H., Sun, Q.C., Yurtisigi, M.K., Sarker, S.K., Gupta, A., Butler, W.H., Musfeldt, J.L. (2013). Chemical tuning of the optical band gap in spinel ferrites: CoFe 2O4 vs NiFe2O4. Applied Physics Letters, 103(8), 2011–2015. DOI: 10.1063/1.4818315
  55. Choppin, G.R., Liljenzin, J.-O., Rydberg, J. (1995). Radiation Effects on Matter. Radiochemistry and Nuclear Chemistry, 166–191. DOI: 10.1016/b978-0-7506-2300-1.50011-7
  56. Lenni, N., Lubis, R.Y., Masthura. (2025). Material Nanopartikel Fotokatalis Fe3o4/Sio2/Tio2 Untuk Degradasi Methylene Blue. Jurnal Rekayasa Material, Manufaktur dan Energi, 8(1), 59–65. DOI: 10.30596/rmme.v8i1.21752
  57. Banerjee, S., Pillai, S.C., Falaras, P., O’shea, K.E., Byrne, J.A., Dionysiou, D.D. (2014). New insights into the mechanism of visible light photocatalysis. Journal of Physical Chemistry Letters, 5(15), 2543–2554. DOI: 10.1021/jz501030x
  58. Barakat, N.A.M., Tolba, G.M.K., Khalil, K.A. (2022). Methylene Blue Dye as Photosensitizer for Scavenger-Less Water Photo Splitting: New Insight in Green Hydrogen Technology. Polymers, 14(3), 1–15. DOI: 10.3390/polym14030523
  59. Song, M., Hou, L., Zhang, J., Zhang, J., Qian, G. (2025). A deeper orbital hybridization because of more unpaired electrons in d orbital resulted in a better catalytic performance. Separation and Purification Technology, 353(PC), 128639. DOI: 10.1016/j.seppur.2024.128639
  60. Kalikeri, S., Shetty Kodialbail, V. (2021). Auto-combustion synthesis of narrow band-gap bismuth ferrite nanoparticles for solar photocatalysis to remediate azo dye containing water. Environmental Science and Pollution Research, 28(10), 12144–12152. DOI: 10.1007/s11356-020-10879-w
  61. Weldekirstos, H.D., Mengist, T., Belachew, N., Mekonnen, M.L. (2024). Enhanced Photocatalytic Degradation of Methylene Blue Dye Using Fascily Synthesized G-C3N4/CoFe2O4 Composite under Sun Light Irradiation. Results in Chemistry, 7, 101306. DOI: 10.1016/j.rechem.2024.101306
  62. Alkhobrani, S.H., Bayahia, H., Alshorifi, F.T. (2023). A Facile Synthesis of Metallic (Zn and Co) Ferrite Nanostructures as Efficient Solid Photocatalysts for Degradation of Methyl Orange and Methylene Blue under Sunlight. Iranian Journal of Materials Science and Engineering, 20(3), 1–12. DOI: 10.22068/ijmse.3284
  63. Dorri, H., Zeraatkar Moghaddam, A., Ghiamati, E., Barikbin, B. (2022). A comprehensive study on the adsorption-photocatalytic processes using CoFe2O4/SiO2/MnO2 magnetic nanocomposite as a novel photo-catalyst for removal of Cr (VI) under simulated sunlight: Isotherm, kinetic and thermodynamic studies. Journal of Environmental Health Science and Engineering, 20(1), 147–165. DOI: 10.1007/s40201-021-00763-1
  64. Al Saady, S.H., Ebrahim, S.E. (2024). Efficient Photocatalytic Degradation of Methylene Blue Using Magnetic CoFe2O4@CuO@Ag3VO4 Nanocomposite. International Journal of Design and Nature and Ecodynamics, 19(6), 1837–1846. DOI: 10.18280/ijdne.190601
  65. Agboola, P.O., Shakir, I., Haider, S. (2022). Development of internal electric field induced NiFe2O4/CdO p-n nano-heterojunctions for solar light activated photodegradation of methylene blue dye. Ceramics International, 48(10), 13572–13579. DOI: 10.1016/j.ceramint.2022.01.236
  66. Ahmad, I., Aslam, M., Jabeen, U., Zafar, M.N., Malghani, M.N.K., Alwadai, N., Alshammari, F.H., Almuslem, A.S., Ullah, Z. (2022). ZnO and Ni-doped ZnO photocatalysts: Synthesis, characterization and improved visible light driven photocatalytic degradation of methylene blue. Inorganica Chimica Acta, 543(July), 121167. DOI: 10.1016/j.ica.2022.121167
  67. Priatmoko, S., Wahyuni, S. (2021). Fotokatalis Ni-N-TiO2 untuk Degradasi Metilen Biru. Inovasi Sains dan Kesehatan, 5, 120–165. DOI: 10.15294/.v0i0.17
  68. Aurich, A., Hofmann, J., Oltrogge, R., Wecks, M., Gläser, R., Blömer, L., Mauersberger, S., Müller, R.A., Sicker, D., Giannis, A. (2017). Improved Isolation of Microbiologically Produced (2R,3S)-Isocitric Acid by Adsorption on Activated Carbon and Recovery with Methanol. Organic Process Research and Development, 21(6), 866–870. DOI: 10.1021/acs.oprd.7b00090
  69. Huang, L., Zhang, L., Li, D., Xin, Q., Jiao, R., Hou, X., Zhang, Y., Li, H. (2020). Enhanced phenol degradation at near neutral pH achieved by core-shell hierarchical 4A zeolite/Fe@Cu catalyst. Journal of Environmental Chemical Engineering, 8(5), 103933. DOI: 10.1016/j.jece.2020.103933
  70. Foo, K.Y., Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. DOI: 10.1016/j.cej.2009.09.013

Last update:

No citation recorded.

Last update:

No citation recorded.