skip to main content

Green Synthesis of Chitosan-Assisted ZnO Nanoparticles and Their Photocatalytic Application in ZnO/TiO₂ Composites for Isopropanol Degradation

1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam

Received: 2 Jul 2025; Revised: 31 Aug 2025; Accepted: 5 Sep 2025; Available online: 8 Sep 2025; Published: 26 Dec 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Nano-sized ZnO particles were successfully synthesized via a green, efficient, and chitosan-assisted method, which is both cost-effective and environmentally friendly. The nanoscale characteristics of the synthesized particles were confirmed through various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption–desorption isotherms, diffuse reflectance spectroscopy (DRS), and Fourier-Transform Infrared Spectroscopy (FTIR). This study primarily investigated the photocatalytic performance of ZnO/TiO₂ composites prepared by a simple mechanical mixing approach for the degradation of isopropanol (IPA) in a continuous-flow system under UVA irradiation at room temperature. A range of experimental conditions, including initial IPA concentrations, gas flow rates, relative humidity levels, and the number of UV lamps, were systematically explored. The mechanically mixed ZnO/TiO₂ nanomaterial exhibited enhanced photocatalytic activity compared to pure ZnO. Notably, while commercial TiO₂ showed reduced IPA removal efficiency under humid conditions, the ZnO/TiO₂ composite maintained superior performance, achieving a removal efficiency of 45% over a 3-hour period at 30% relative humidity with an inlet IPA concentration of about 1200 ppmv, a flow rate of 3 L/h, and illumination by four UV lamps. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Nanoparticle; ZnO; ZnO/TiO2; Photocatalysis; IPA.
Funding: Ho Chi Minh City University of Technology

Article Metrics:

  1. Li, S., Lin, Y., Liu, G., Shi, C. (2023). Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review. Environmental Science: Processes & Impacts, 25(4), 727-740. DOI: 10.1039/D2EM00436D
  2. Belaissaoui, B., Le Moullec, Y., Favre, E. (2016). Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach. Energy, 95, 291-302. DOI: 10.1016/j.energy.2015.12.006
  3. Espinosa-Ortiz, E.J., R., R.E., Gerlach, R. (2022). Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Critical Reviews in Biotechnology, 42, 3, 361-383. DOI: 10.1080/07388551.2021.1940831
  4. Minh, N.T., Thanh, L.D., Trung, B.C., An, N.T., Long, N.Q. (2018). Dual functional adsorbent/catalyst of nano-gold/metal oxides supported on carbon grain for low-temperature removal of toluene in the presence of water vapor. Clean Technologies and Environmental Policy, 20(8), 1861-1873. DOI: 10.1007/s10098-018-1583-6
  5. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114, 19, 9919-9986. DOI: 10.1021/cr5001892.
  6. Tu, L.N.Q., Nhan, N.V.H., Van Dung, N., An, N.T., Long, N.Q. (2019). Enhanced photocatalytic performance and moisture tolerance of nano-sized Me/TiO 2–zeolite Y (Me= Au, Pd) for gaseous toluene removal: activity and mechanistic investigation. Journal of Nanoparticle Research, 21, 1-19. DOI: 10.1007/s11051-019-4642-y
  7. Nurbayti, S., Adawiah, A., Bale, U.F., Fadhilla, R., Ramadhan, F.N., Zulys, A., Sukandar, D., Saridewi, N., Tulhusna, L. (2024). Sonochemical Assisted Synthesis of Cr-PTC Metal Organic Framework, ZnO, and Fe3O4 Composite and Their Photocatalytic Activity in Methylene Blue Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 19 (2), 318-326. DOI: 10.9767/bcrec.20156
  8. Twilton, J., Le, C., Zhang, P., Shaw, M.H., Evans, R.W., and MacMillan, D.W.C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1, no. 7, 0052. Doi: 10.1038/s41570-017-0052
  9. Nhan, N.V.H., Tu, L.N.Q., Loc, B.T., Vinh, D.C., Phuong, N.T.T., Duong, N.T.H., ... Long, N.Q. (2024). Microwave-assisted synthesis of Carbon Nanodots/TiO2 Composite with enhanced photocatalytic oxidation of VOCs in a continuous Flow reaction. Topics in Catalysis, 67(9), 661-669. DOI: 10.1007/s11244-023-01889-2
  10. Low, J., Yu, J., Jaroniec, M., Wageh, S., Al‐Ghamdi, A.A. (2017). Heterojunction photocatalysts. Advanced Materials, 29, 20, 1601694. DOI: 10.1002/adma.201601694
  11. Anh, L.K., Oanh, N.T.K., Hieu, T.L.M., Phuong, N.T.T., Duong, N.T.H., Dung, N.V., Long, N.Q. (2022). Synthesis and Photocatalytic Activity for Toluene Removal of CDs/TiO2 - Zeolite Y. Bulletin of Chemical Reaction Engineering & Catalysis, 17 (4), 862-871. DOI: 10.9767/bcrec.17.4.16137.862-871
  12. Gul, M., Kashif, M., Shahid, K.J.P.R.J. (2024). Eco-friendly approaches in the synthesis of ZnO nanoparticles using plant extract: a review. Phytopharmacology Research Journal (PRJ), 3, 2, 1-25
  13. Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L., Li, Y. (2021). Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 360, 115544. DOI: 10.1016/j.ssi.2020.115544
  14. Sha, R., Basak, A., Maity, P.C., Badhulika, S. (2022). ZnO nano-structured based devices for chemical and optical sensing applications. Sensors Actuators Reports, 4, 100098. DOI: 10.1016/j.snr.2022.100098
  15. Wibowo, A., Marsudi, M.A., Amal, M.I., Ananda, M.B., Stephanie, R., Ardy, H., Diguna, L.J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10, 70, 42838-42859. DOI: 10.1039/D0RA07689A
  16. Huang, X., Zheng, X., Xu, Z., Yi, C. (2017). ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. International Journal of Pharmaceutics, 534, 1-2, 190-194. DOI: 10.1016/j.ijpharm.2017.10.008
  17. Abebe, B., Zereffa, E.A., Tadesse, A., Murthy, H.A. (2020). A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Research Letters, 15, 1-19. DOI: 10.1186/s11671-020-03418-6
  18. Ong, C.B., Ng, L.Y., Mohammad, A.W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable Sustainable Energy Reviews, 81, 536-551. DOI: 10.1016/j.rser.2017.08.020
  19. Mousa, H.M., Alenezi, J.F., Mohamed, I.M., Yasin, A.S., Hashem, A.-F.M., Abdal-Hay, A. (2021). Synthesis of TiO2@ ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys Compounds, 886, 161169. DOI: 10.1016/j.jallcom.2021.161169
  20. Wang, J., Wang, G., Wei, X., Liu, G., Li, J. (2018). ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB. Applied Surface Science, 456, 666-675. DOI: 10.1016/j.apsusc.2018.06.182
  21. Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Dobrowolska, A., Czaczyk, K., Motylenko, M., Rafaja, D., Ehrlich, H., Jesionowski, T. (2019). Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties. Applied Surface Science, 463, 791-801. DOI: 10.1016/j.apsusc.2018.08.256
  22. Mukhopadhyay, S., Maiti, D., Chatterjee, S., Devi, P.S., Kumar, G.S. (2016). Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage. Physical Chemistry Chemical Physics, 18, 46, 31622-31633. DOI: 10.1039/C6CP06903G
  23. Wang, Y., Zhu, S., Chen, X., Tang, Y., Jiang, Y., Peng, Z., Wang, H. (2014). One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Applied Surface Science, 307, 263-271. DOI: 10.1016/j.apsusc.2014.04.023
  24. Ahmed, N., Majid, A., Khan, M., Rashid, M., Umar, Z., Baig, M. (2018). Synthesis and characterization of Zn/ZnO microspheres on indented sites of silicon substrate. Mater. Sci., 36, 3, 501-508. DOI: 10.2478/msp-2018-0058
  25. Norouzzadeh, P., Mabhouti, K., Golzan, M., Naderali, R. (2020). Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. Journal of Materials Science: Materials in Electronics, 31, 7335-7347. DOI: 10.1007/s10854-019-02517-0
  26. Lokesh, B., Rao, N.M. (2016). Effect of Cu-doping on structural, optical and photoluminescence properties of zinc titanates synthesized by solid state reaction. Journal of Materials Science: Materials in Electronics, 27, 4253-4258. DOI: 10.1007/s10854-016-4290-2
  27. Shen, Y., Xu, B., Zhu, S., Zhang, F., Zhao, Q., Li, X. (2018). Enhanced photocatalytic reduction of cadmium on calcium ferrite-based nanocomposites by simulated solar radiation. Materials Letters, 211, 142-145. DOI: 10.1016/j.matlet.2017.09.114
  28. Nath, D., Singh, F., Das, R. (2020). X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Materials Chemistry Physics, 239, 122021. DOI: 10.1016/j.matchemphys.2019.122021
  29. Nguyen, N.T., Nguyen, V.A. (2020). Synthesis, characterization, and photocatalytic activity of ZnO nanomaterials prepared by a green, nonchemical route. Journal of Nanomaterials 2020, 1, 1768371. DOI: https://doi.org/10.1155/2020/1768371
  30. Chen, J., Wang, G., Wei, J., Guo, Y. (2019). Effect of sulfur dopant atoms on the electronic band gap and optical properties of tin iodide. Chemical Physics Letters, 730, 557-561. DOI: 10.1016/j.cplett.2019.06.056
  31. Singh, J., Rathi, A., Rawat, M., Kumar, V., Kim, K.-H. (2019). The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles. Composites Part B: Engineering, 166, 361-370. DOI: 10.1016/j.compositesb.2018.12.006
  32. da Trindade, L.G., Minervino, G.B., Trench, A.B., Carvalho, M.H., Assis, M., Li, M.S., de Oliveira, A.J., Pereira, E.C., Mazzo, T.M., Longo, E. (2018). Influence of ionic liquid on the photoelectrochemical properties of ZnO particles. Ceramics International, 44, 9, 10393-10401. DOI: 10.1016/j.ceramint.2018.03.053
  33. Nhan, N.V.H., Long, N.Q. (2021). Photodegradation of acetone vapor by carbon dots decorated TiO2 catalyst: effects of experimental conditions. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 012014. IOP Publishing
  34. Shayegan, Z., Lee, C.-S., Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review. Chemical Engineering Journal, 334, 2408-2439. DOI: 10.1016/j.cej.2017.09.153

Last update:

No citation recorded.

Last update:

No citation recorded.