skip to main content

Y Zeolite-Based Catalyst for Palm Oil Cracking to Produce Gasoline

1Faculty of Engineering, Universitas Negeri Padang, Padang, 25131, Indonesia

2Departement of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia

Received: 14 Dec 2024; Revised: 7 Feb 2025; Accepted: 10 Feb 2025; Available online: 14 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increasing demand for oil fuel and the decline of crude oil reserves highlight the need for alternative energy sources. Palm oil, as a renewable resource, has potential for biofuel production through catalytic cracking. This study aims to develop and evaluate modified zeolite-based catalysts, particularly ZSM-5/HY, to produce palm oil-derived gasoline that meets European fuel standards. The research involved catalyst preparation, modification with ZSM-5 and phosphorus, and activity testing in a fixed-bed reactor. Gasoline yield and catalyst performance were analyzed using gas chromatography. The results showed nearly 100% conversion of palm oil under optimal conditions, with gasoline yield meeting European standard. The addition of ZSM-5 improved conversion and RON, while phosphorus modification reduced catalyst acidity, affecting yield and coke formation. This study concludes that modifying zeolite catalysts with ZSM-5 and phosphorus enables efficient palm oil-derived gasoline production with high RON and reduced aromatic content, contributing to sustainable energy solutions. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Biogasoline; Catalytic cracking; Palm oil; Y Zeolite; ZSM-5; Phosphorous promotion.
Funding: Institut Teknologi Bandung

Article Metrics:

  1. Pambudi, N.A., Firdaus, R.A., Rizkiana, R., Ulfa, D.K., Salsabila, M.S., Suharno, Sukatiman (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability (Switzerland), 15(3). DOI: 10.3390/su15032342
  2. Indupurnahayu, Setiawan, E.B., Agusinta, L., Suryawan, R.F., Ricardianto, P., Sari, M., Mulyono, S., Sakti, R.F.J. (2021). Changes in demand and supply of the crude oil market during the covid-19 pandemic and its effects on the natural gas market. International Journal of Energy Economics and Policy, 11(3), 1–6. DOI: 10.32479/ijeep.10671
  3. Rahman, A., Dargusch, P., Wadley, D. (2021). The political economy of oil supply in Indonesia and the implications for renewable energy development. Renewable and Sustainable Energy Reviews, 144 (September 2020), 111027. DOI: 10.1016/j.rser.2021.111027
  4. Betrix, B., Fajri, H.C., Rawung, S.S. (2022). Competitiveness of Indonesia’s Crude Palm Oil (CPO) in International Markets: Based on Database 2018. Journal of International Conference Proceedings, 5(2), 106–115. DOI: 10.32535/jicp.v5i2.1677
  5. de Almeida, E.S., da Silva Damaceno, D., Carvalho, L., Victor, P.A., Dos Passos, R.M., de Almeida Pontes, P.V., Cunha-Filho, M., Sampaio, K.A., Monteiro, S. (2021). Thermal and physical properties of crude palm oil with higher oleic content. Applied Sciences (Switzerland), 11(15). DOI: 10.3390/app11157094
  6. Makertihartha, I.G.B.N., Fitradi, R.B., Ramadhani, A.R., Laniwati, M., Muraza, O., Subagjo (2020). Biogasoline Production from Palm Oil: Optimization of Catalytic Cracking Parameters. Arabian Journal for Science and Engineering, 45(9), 7257–7266. DOI: 10.1007/s13369-020-04354-4
  7. Wang, Y.L., Wang, X.X., Zhu, Y.A., Zhu, K.K., Chen, D., Zhou, X.G. (2020). Shape selectivity in acidic zeolite catalyzed 2-pentene skeletal isomerization from first principles. Catalysis Today, 347, 115–123. DOI: 10.1016/j.cattod.2018.06.009
  8. Pazmiño-Viteri, K., Cabezas-Terán, K., Echeverría, D., Cabrera, M., Taco-Vásquez, S. (2024). Average Carbon Number Analysis and Relationship with Octane Number and PIONA Analysis of Premium and Regular Gasoline Expended in Ecuador. Processes, 12(8). DOI: 10.3390/pr12081706
  9. Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, D., Zhao, D., Qi, S. (2020). Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of the Total Environment, 703(2019), 135505. DOI: 10.1016/j.scitotenv.2019.135505
  10. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M., Ali Abdelkareem, M., Kamil, M., Olabi, A.G. (2021). Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review. Fuel, 291 (January), 120112. DOI: 10.1016/j.fuel.2020.120112
  11. Rezaei, P.S., Shafaghat, H., Daud, W.M.A.W. (2014). Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Applied Catalysis A: General, 469, 490–511. DOI: 10.1016/j.apcata.2013.09.036
  12. Twaiq, F.A.A., Bhatia, S. (2001). Catalytic cracking of palm oil over zeolite catalysts : statistical approach. IIUM Engineering Journal, 2(1), 1–10. DOI: 10.31436/iiumej.v2i1.337
  13. Liu, Y., Ding, G., Wang, H., Li, X., Zhang, J., Zhu, Y., Yang, Y., Li, Y. (2021). Highly selective glucose isomerization by HY zeolite in gamma-butyrolactone/H2O system over fixed bed reactor. Catalysis Communications, 156, 106324. DOI: 10.1016/j.catcom.2021.106324
  14. Qian, E.W., Chen, N., Gong, S. (2014). Role of support in deoxygenation and isomerization of methyl stearate over nickel-molybdenum catalysts. Journal of Molecular Catalysis A: Chemical, 387, 76–85. DOI: 10.1016/j.molcata.2014.02.031
  15. Xu, Y., Cui, S. (2018). A novel fluid catalytic cracking process for maximizing iso-paraffins: from fundamentals to commercialization. Frontiers of Chemical Science and Engineering, 12(1), 9–23. DOI: 10.1007/s11705-017-1696-1
  16. Bij, H.E. Van Der, Weckhuysen, B.M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem. Soc. Rev. 44, 7406-7428. DOI: 10.1039/C5CS00109A
  17. Farshi, A., Abri, H.R. (2012). The addition of ZSM-5 to a fluid catalytic cracking catalyst for increasing olefins in fluid catalytic cracking light gas. Petroleum Science and Technology, 30(12), 1285–1295. DOI: 10.1080/10916466.2010.497789
  18. Serrano-Bermúdez, L.M., Monroy-Peña, C.A., Moreno, D., Abril, A., Imbachi Niño, A.D., Martínez Riascos, C.A., Buitrago Hurtado, G., Narváez Rincón, P.C. (2021). Kinetic models for degumming and bleaching of phospholipids from crude palm oil using citric acid and Super Flo B80® and Tonsil®. Food and Bioproducts Processing, 129, 75–83. DOI: 10.1016/j.fbp.2021.07.005
  19. Ifa, L., Wiyani, L., Nurdjannah, N., Ghalib, A.M.T., Ramadhaniar, S., Kusuma, H.S. (2021). Analysis of bentonite performance on the quality of refined crude palm oil’s color, free fatty acid and carotene: the effect of bentonite concentration and contact time. Heliyon, 7(6), e07230. DOI: 10.1016/j.heliyon.2021.e07230
  20. Sousa-Aguiar, E.F., Trigueiro, F.E., Zotin, F.M.Z. (2013). The role of rare earth elements in zeolites and cracking catalysts. Catalysis Today, 218–219, 115–122. DOI: 10.1016/j.cattod.2013.06.021
  21. Yan Gao, Binghui Zheng, Guang Wu, Fangwei Ma, C.L. (2016). Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Advances, 87. DOI: 10.1039/C6RA17084F
  22. Ravindran, K., Madhu, D.G. (2020). Impact of Shape and Size of Catalysts on the Physical Properties and Pressure Drop in Fixed Bed Catalytic Systems. International Journal of Innovative Technology and Exploring Engineering, 9(6), 1103–1109. DOI: 10.35940/ijitee.f4214.049620
  23. Blasco, T., Corma, A., Martínez-Triguero, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267–277. DOI: 10.1016/j.jcat.2005.11.011
  24. Shimada, I., Kato, S., Hirazawa, N., Nakamura, Y., Ohta, H., Suzuki, K., Takatsuka, T. (2017). Deoxygenation of triglycerides by catalytic cracking with enhanced hydrogen transfer activity. Industrial and Engineering Chemistry Research, 56(1), 75–86. DOI: 10.1021/acs.iecr.6b03514
  25. Shan Ahamed, T., Anto, S., Mathimani, T., Brindhadevi, K., Pugazhendhi, A. (2021). Upgrading of bio-oil from thermochemical conversion of various biomass – Mechanism, challenges and opportunities. Fuel, 287(August), 119329. DOI: 10.1016/j.fuel.2020.119329
  26. Nazarova, G., Ivanchina, E., Ivashkina, E., Kiseleva, S., Stebeneva, V. (2015). Thermodynamic Analysis of Catalytic Cracking Reactions as the First Stage in the Development of Mathematical Description. Procedia Chemistry, 15, 342–349. DOI: 10.1016/j.proche.2015.10.054
  27. Long, F., Zhang, X., Cao, X., Zhai, Q., Song, Y., Wang, F., Jiang, J., Xu, J. (2020). Mechanism investigation on the formation of olefins and paraffin from the thermochemical catalytic conversion of triglycerides catalyzed by alkali metal catalysts. Fuel Processing Technology, 200(December 2019), 106312. DOI: 10.1016/j.fuproc.2019.106312
  28. Fluegel, L.L., Hoye, T.R. (2021). Hexadehydro-diels-alder reaction: Benzyne generation via cycloisomerization of tethered triynes. Chemical Reviews, 121(4), 2413–2444. DOI: 10.1021/acs.chemrev.0c00825
  29. Bhasin, M.M., McCain, J.H., Vora, B. V., Imai, T., Pujadó, P.R. (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1–2), 397–419. DOI: 10.1016/S0926-860X(01)00816-X
  30. Zhang, Y., Wang, J., Guo, Y., Liu, S., Shen, X. (2024). Carbonyl Olefin Metathesis and Dehydrogenative Cyclization of Aromatic Ketones and gem-Difluoroalkenes. Angewandte Chemie - International Edition, 63(5) DOI: 10.1002/anie.202315269
  31. Guisnet, M., Magnoux, P. (2001). Organic chemistry of coke formation. Applied Catalysis A: General, 212(1–2), 83–96. DOI: 10.1016/S0926-860X(00)00845-0
  32. Anand, M., Sibi, M.G., Verma, D., Sinha, A.K. (2014). Anomalous hydrocracking of triglycerides over CoMo-catalyst-influence of reaction intermediates. Journal of Chemical Sciences, 126(2), 473–480. DOI: 10.1007/s12039-014-0587-y
  33. Taufiqurrahmi, N., Bhatia, S. (2011). Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy and Environmental Science, 4(4), 1087–1112. DOI: 10.1039/c0ee00460j
  34. Wang, G. (2015). Zeolite – zeolite composite fabricated by polycrystalline Y zeolite crystals parasitizing ZSM-5 zeolite. Material Research S, 30(16), 2434-2446. DOI: 10.1557/jmr.2015.225
  35. Abdulridha, S., Jiao, Y., Xu, S., Zhang, R., Ren, Z., Garforth, A.A., Fan, X. (2021). A Comparative Study on Mesoporous Y Zeolites Prepared by Hard-Templating and Post-Synthetic Treatment Methods. Applied Catalysis A: General, 612(January), 117986. DOI: 10.1016/j.apcata.2020.117986
  36. Annisa, W.W.A.N. (2017). Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures. Applied Catalysis A: General, 612(January), 117986. DOI: 10.1088/1757-899X/214/1/012032
  37. Agliullin, M.R., Fayzullin, A. V., Fayzullina, Z.R., Kutepov, B.I. (2023). The Role of Intermediate Phases in the Crystallization of Aluminophosphate Sieves on Examples of AlPO-11 and AlPO-41. Crystals, 13(2). DOI: 10.3390/cryst13020227
  38. Jae, J., Tompsett, G.A., Foster, A.J., Hammond, K.D., Auerbach, S.M., Lobo, R.F., Huber, G.W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257–268. DOI: 10.1016/j.jcat.2011.01.019
  39. Uemura, Y., Sinnasami, R.A., Trinh, T.H., Onoe, K. (2020). Estimation of molecular size of triglyceride in a variety of solvents by using the intrinsic viscosity technique: An important index for transesterification of triglyceride in homogenous system. IOP Conference Series: Earth and Environmental Science, 460(1), 0–6. DOI: 10.1088/1755-1315/460/1/012011
  40. Laredo, G.C., Vega Merino, P.M., Hernández, P.S. (2018). Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review. Industrial and Engineering Chemistry Research, 57(22), 7315–7321. DOI: 10.1021/acs.iecr.8b00248
  41. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D.D., Pakpahan, A.W.S., Pakpahan, A.J. (2021). Biofuels production from catalytic cracking of palm oil using modified hy zeolite catalysts over a continuous fixed bed catalytic reactor. International Journal of Renewable Energy Development, 10(1), 149–156. DOI: 10.14710/ijred.2021.33281
  42. Al-Rubaye, A.H., Al-Robai, H.A., Jasim, D.J., Mohammed Al-Khafaj, H.A., Ameen, H.F.M., Al-Turaihi, A.S. (2024). Environmental Method of Distilling Gasoline Based on ASTM D86: A Comparative Study. IOP Conference Series: Earth and Environmental Science, 1371(2) DOI: 10.1088/1755-1315/1371/2/022021
  43. Cheah, K.W., Yusup, S., Loy, A.C.M., How, B.S., Skoulou, V., Taylor, M.J. (2022). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics. Molecular Catalysis, 523(February), 111469. DOI: 10.1016/j.mcat.2021.111469
  44. Ozawa, T., Kurahashi, T., Matsubara, S. (2011). Dehydrogenative diels-alder reaction. Organic Letters, 13(19), 5390–5393. DOI: 10.1021/ol202283d
  45. Mostad, H.B., Riis, T.U., Ellestad, O.H. (1990). Shape selectivity in Y-zeolites. Catalytic cracking of decalin-isomers in fixed bed micro reactors. Applied Catalysis, 58(1), 105–117. DOI: 10.1016/S0166-9834(00)82281-2

Last update:

No citation recorded.

Last update:

No citation recorded.