skip to main content

Enhancing Carbon Monoxide Oxidation of Cobalt-Nickel Containing A-Deficient Perovskites through Exsolution Agents and Reduction-Oxidation Pretreatment

1Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia

2Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, Arau, Perlis, Malaysia

3Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia

4 Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang Darul Makmur, Malaysia

View all affiliations
Received: 6 Dec 2024; Revised: 15 Feb 2025; Accepted: 15 Feb 2025; Available online: 18 Feb 2025; Published: 30 Apr 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this work, different types of exsolution agents and pretreatment processes, comprising reduction-oxidation (RO) components, were introduced to modulate the exsolution process of A-deficient perovskites, La0.7Ce0.1Co0.3Ni0.1Ti0.6O3. The catalysts were assessed using field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM/EDS), X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their carbon monoxide (CO) oxidation activity was also compared. The results showed that the catalytic activity degraded at 520 °C when hydrogen (E-H) was used as the exsolution agent. When RO components were introduced as exsolution agents (E-CO/O2) or in the pretreatment (RO2% and RO18%), the deactivation at high temperatures was mitigated. The results of this study showed that RO18% was favourably pretreated with RO components, recording the highest CO conversion of 60.57% at 520 °C and across all temperatures with no degradation at high temperature. It also recorded the lowest activation energy of 14.449 kJ/mol. The EDS, XRD, and XPS analyses of the catalyst demonstrated that the active sites for this reaction are primarily Co2+ with Ni serving as the anchor between the metals and perovskites support. A high amount of lattice oxygen (O2) with higher binding energy and chemisorbed O2 species also influenced the improved catalytic activity, attracting CO for reaction, reacting with the available surface O2 and the faster replenishment of O2 vacancies by the absorbed and bulk O2 lattice. These findings highlight the prospects of CO and O2 inclusion in pretreatment for perovskite catalyst as options to reduce metal agglomeration and further improve CO oxidation activity. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Pretreatment; Exsolution; Transition metals; CO oxidation; Surface oxygen
Funding: Malaysian Ministry of Higher Education (MOHE) under contract FRGS/1/2018/TK02/UNIMAP/02/8

Article Metrics:

  1. Takaya, J. (2021). Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem Sci, 12(6), 1964–1981. DOI: 10.1039/D0SC04238B
  2. Reek, J.N.H., de Bruin, B., Pullen, S., Mooibroek, T.J., Kluwer, A.M., Caumes, X. (2022). Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical Reviews, 122(14), 12308–12369. DOI: 10.1021/acs.chemrev.1c00862
  3. Yu, W., Batchelor-McAuley, C., Chang, X., Young, N.P., Compton, R.G. (2019). Porosity controls the catalytic activity of platinum nanoparticles. Phys. Chem. Chem. Phys., 21(36), 20415–20421. DOI: 10.1039/C9CP03887F
  4. Zhang, L., Zhu, H., Hao, J., Wang, C., Wen, Y., Li, H., Lu, S., Duan, F., Du, M. (2019). Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. Electrochimica Acta, 327, 135033. DOI: 10.1016/j.electacta.2019.135033
  5. Zhu, H., Zhang, P., Dai, S. (2015). Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catalysis, 5(11), 6370–6385. DOI: 10.1021/acscatal.5b01667
  6. Hwang, J., Rao, R.R., Giordano, L., Katayama, Y., Yu, Y., Shao-Horn, Y. (2017). Perovskites in catalysis and electrocatalysis. Science, 358(6364), 751–756. DOI: 10.1126/science.aam7092
  7. Rojas-Cervantes, M.L., Castillejos, E. (2019). Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts, 9(3). DOI: 10.3390/catal9030230
  8. Dai, L., Lu, X.-B., Chu, G.-H., He, C.-H., Zhan, W.-C., Zhou, G.-J. (2021). Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 40(3), 555–562. DOI: 10.1007/s12598-019-01360-w
  9. Pinto, D., Glisenti, A. (2019). Pulsed reactivity on LaCoO3-based perovskites: A comprehensive approach to elucidate the CO oxidation mechanism and the effect of dopants. Catalysis Science and Technology, 9(11), 2749 – 2757. DOI: 10.1039/c9cy00210c
  10. Li, P., Chen, X., Li, Y., Schwank, J.W. (2021). Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation. Catalysis Today, 364, 7–15. DOI: 10.1016/j.cattod.2020.03.012
  11. Jiang, Y., Zou, L., Zhang, H., Tang, X., Zhou, L., Tian, C., Dai, S. (2024). Revealing pretreatment-induced structure evolution of LaFeO3 supported Au catalyst for CO oxidation reaction. Nano Today, 57, 102341. DOI: 10.1016/j.nantod.2024.102341
  12. Neagu, D., Papaioannou, E.I., Ramli, W.K.W., Miller, D.N., Murdoch, B.J., Ménard, H., Umar, A., Barlow, A.J., Cumpson, P.J., Irvine, J.T.S., Metcalfe, I.S. (2017). Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nature Communications, 8(1), 1855. DOI: 10.1038/s41467-017-01880-y
  13. Lew, G.L., Ibrahim, N., Abdullah, S., Wan Daud, W.R., Ramli, W.K.W. (2021). Exsolution enhancement of metal-support CO oxidation perovskite catalyst with parameter modification. In: IOP Conference Series: Earth and Environmental Science, DOI: 10.1088/1755-1315/765/1/012078
  14. Lew, G.L., Ibrahim, N., Abdullah, S., Daud, W.R.W., Ramli, W.K.W. (2021). Exsolution Enhancement of Metal-support CO Oxidation Perovskite Catalyst with Parameter Modification. IOP Conference Series: Earth and Environmental Science, 765(1), 12078. DOI: 10.1088/1755-1315/765/1/012078
  15. Abu Tahari, M.N., Salleh, F., Tengku Saharuddin, T.S., Samsuri, A., Samidin, S., Yarmo, M.A. (2021). Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations. International Journal of Hydrogen Energy, 46(48), 24791–24805. DOI: 10.1016/j.ijhydene.2020.06.250
  16. Mountapmbeme Kouotou, P., Waqas, M., El Kasmi, A., Atour, Z., Tian, Z.-Y. (2021). Influence of Co addition on Ni-Co mixed oxide catalysts toward the deep oxidation of low-rank unsaturated hydrocarbons. Applied Catalysis A: General, 612, 117990. DOI: 10.1016/j.apcata.2021.117990
  17. Flores-Lasluisa, J.X., Huerta, F., Cazorla-Amorós, D., Morallón, E. (2023). LaNi1-xCoxO3 perovskites for application in electrochemical reactions involving molecular oxygen. Energy, 273, 127256. DOI: 10.1016/j.energy.2023.127256
  18. Robert, R., Bocher, L., Sipos, B., Döbeli, M., Weidenkaff, A. (2007). Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters. Progress in Solid State Chemistry, 35(2-4 SPEC. ISS.), 447–455. DOI: 10.1016/j.progsolidstchem.2007.01.020
  19. Luo, Y., Zheng, Y., Feng, X., Lin, D., Qian, Q., Wang, X., Zhang, Y., Chen, Q., Zhang, X. (2020). Controllable P Doping of the LaCoO3 Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials and Interfaces, 12(21), 23789–23799. DOI: 10.1021/acsami.0c01599
  20. Bo, L., Rim, H.-R., Lee, H.-K., Park, G., Shim, J. (2021). Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution. Transctions of the Korean Hydrogen and New Energy Society, 32, 41–52. DOI: 10.7316/KHNES.2021.32.1.41
  21. Aghazadeh, M., Arhami, B., Malek Barmi, A.A., Hosseinifard, M., Gharailou, D., Fathollahi, F. (2014). La(OH)3 and La2O3 nanospindles prepared by template-free direct electrodeposition followed by heat-treatment. Materials Letters, 115, 68–71. DOI: 10.1016/j.matlet.2013.10.002
  22. Kosova, N.V, Devyatkina, E.T., Kaichev, V.V (2007). Mixed layered Ni–Mn–Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition. Journal of Power Sources, 174(2), 735–740. DOI: 10.1016/j.jpowsour.2007.06.109
  23. Yang, Y., Zeng, R., Xiong, Y., DiSalvo, F.J., Abruña, H.D. (2019). Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 141(49), 19241–19245. DOI: 10.1021/jacs.9b10809
  24. Liu, Z., Li, J., Wang, R. (2020). CeO2 nanorods supported M–Co bimetallic oxides (M = Fe, Ni, Cu) for catalytic CO and C3H8 oxidation. Journal of Colloid and Interface Science, 560, 91–102. DOI: 10.1016/j.jcis.2019.10.046
  25. Khalid, H., Haq, A. ul, Alessi, B., Wu, J., Savaniu, C.D., Kousi, K., Metcalfe, I.S., Parker, S.C., Irvine, J.T.S., Maguire, P., Papaioannou, E.I., Mariotti, D. (2022). Rapid Plasma Exsolution from an A-site Deficient Perovskite Oxide at Room Temperature. Advanced Energy Materials, 12(45). DOI: 10.1002/aenm.202201131
  26. Shi, Y., Li, J., Zhang, B., Lv, S., Wang, T., Liu, X. (2021). Tuning electronic structure of CoNi LDHs via surface Fe doping for achieving effective oxygen evolution reaction. Applied Surface Science, 565, 150506. DOI: 10.1016/j.apsusc.2021.150506
  27. Yu, X., Tao, X., Gao, Y., Ding, L., Wang, Y., Yu, G., Wang, F. (2022). Oxygen Vacancy-Mediated Selective H2S Oxidation over Co-Doped LaFexCo1−xO3 Perovskite. Catalysts, 12(2). DOI: 10.3390/catal12020236
  28. Sim, Y., Kwon, D., An, S., Ha, J.-M., Oh, T.-S., Jung, J.C. (2020). Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Molecular Catalysis, 489, 110925. DOI: 10.1016/j.mcat.2020.110925
  29. Kim, I., Lee, G., Na, H. Bin, Ha, J.-M., Jung, J.C. (2017). Selective oxygen species for the oxidative coupling of methane. Molecular Catalysis, 435, 13–23. DOI: 10.1016/j.mcat.2017.03.012
  30. Boningari, T., Ettireddy, P.R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C.A., Smirniotis, P.G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 325, 145–155. DOI: 10.1016/j.jcat.2015.03.002
  31. Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., Shi, L., Zhang, D. (2019). Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 119(19), 10916–10976. DOI: 10.1021/acs.chemrev.9b00202
  32. Yang, J., Hu, S., Fang, Y., Hoang, S., Li, L., Yang, W., Liang, Z., Wu, J., Hu, J., Xiao, W., Pan, C., Luo, Z., Ding, J., Zhang, L., Guo, Y. (2019). Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catalysis, 9(11), 9751–9763. DOI: 10.1021/acscatal.9b02408
  33. Tang, X., Wang, J., Ma, Y., Li, J., Zhang, X., Liu, B. (2021). Low-temperature and stable CO oxidation of Co3O4/TiO2 monolithic catalysts. Chinese Chemical Letters, 32(1), 48–52. DOI: 10.1016/j.cclet.2020.11.008
  34. Qi, F., Peng, J., Liang, Z., Guo, J., Liu, J., Fang, T., Mao, H. (2024). Strong metal-support interaction (SMSI) in environmental catalysis: Mechanisms, application, regulation strategies, and breakthroughs. Environmental Science and Ecotechnology, 22, 100443. DOI: 10.1016/j.ese.2024.100443
  35. Seemala, B., Cai, C.M., Wyman, C.E., Christopher, P. (2017). Support Induced Control of Surface Composition in Cu–Ni/TiO2 Catalysts Enables High Yield Co-Conversion of HMF and Furfural to Methylated Furans. ACS Catalysis, 7(6), 4070–4082. DOI: 10.1021/acscatal.7b01095
  36. Zhang, L., Wang, F., Zhu, J., Han, B., Fan, W., Zhao, L., Cai, W., Li, Z., Xu, L., Yu, H., Shi, W. (2019). CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction. Fuel, 256, 115954. DOI: 10.1016/j.fuel.2019.115954
  37. Zhou, M., Cai, L., Bajdich, M., García-Melchor, M., Li, H., He, J., Wilcox, J., Wu, W., Vojvodic, A., Zheng, X. (2015). Enhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co2+ with Cu2+. ACS Catalysis, 5(8), 4485–4491. DOI: 10.1021/acscatal.5b00488
  38. Chen, S., Hao, Y., Chen, R., Su, Z., Chen, T. (2021). Hollow multishelled spherical PrMnO3 perovskite catalyst for efficient catalytic oxidation of CO and toluene. Journal of Alloys and Compounds, 861, 158584. DOI: 10.1016/j.jallcom.2020.158584
  39. Pan, K.L., Young, C.W., Pan, G.T., Chang, M.B. (2020). Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts. Catalysis Today, 348, 15–25. DOI: 10.1016/j.cattod.2019.08.038
  40. Dosa, M., Sartoretti, E., Monteverde, A., Bensaid, S., Popescu, I., Marcu, I.-C., Frontera, P., Malara, A., Macario, A., Piumetti, M. (2024). La-based perovskites for autothermal reforming: In-situ electrical conductivity measurements and catalytic study. Applied Catalysis O: Open, 192, 206959. DOI: 10.1016/j.apcato.2024.206959
  41. Lykaki, M., Stefa, S., Carabineiro, S., Pandis, P., Stathopoulos, V., Konsolakis, M. (2019). Facet‐Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts, 9, 371. DOI: 10.3390/catal9040371
  42. Singh, V., Major, D.T. (2016). Electronic Structure and Bonding in Co-Based Single and Mixed Valence Oxides: A Quantum Chemical Perspective. Inorganic Chemistry, 55(7), 3307–3315. DOI: 10.1021/acs.inorgchem.5b02426
  43. Miranda-López, M.I., Padilla-Zarate, E.A., Hernández, M.B., Falcón-Franco, L.A., García-Villarreal, S., García-Quiñonez, L. V., Zambrano-Robledo, P., Toxqui-Terán, A., Aguilar-Martínez, J.A. (2020). Comparison between the use of Co3O4 or CoO on microstructure and electrical properties in a varistor system based on SnO2. Journal of Alloys and Compounds, 824. DOI: 10.1016/j.jallcom.2020.153952

Last update:

No citation recorded.

Last update:

No citation recorded.