1Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
2Faculty of Electric and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
3Faculty of Technical Education and Vocational, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
BibTex Citation Data :
@article{BCREC20061, author = {Sawsan Abdullah Abduljabbar Anaam and Mohd Zainizan Sahdan}, title = {Precursor-concentration-controlled Morphology of TiO2 Nanorod/Nanoflower Films for Enhanced Photoelectrochemical Water Splitting and Investigating Their Growth Mechanism}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {1}, year = {2024}, keywords = {TiO2 1D nanorod/3D nanoflower film; Hydrothermal method; Photoelectrochemical water splitting; Growth mechanism; photocatalyst}, abstract = { Titanium dioxide (TiO 2 ) has been considered as one of the most promising photocatalysts for photoelectrochemical (PEC) water splitting. Therefore, numerous efforts have been devoted to improving its PEC water splitting performance. In this study, TiO 2 nanorod/nanoflower (NRF) films with controlled morphology were synthesized on fluorine-doped tin oxide (FTO) glass substrates by following a facile one-step hydrothermal method. The TiO 2 NRF films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectrometer (EDS), and ultraviolet-visible (UV-Vis) spectrophotometer. FE-SEM showed that the TiO 2 films are composed of a simultaneous growth of a primary layer of TiO 2 nanorod arrays (NRAs) and a second layer of TiO 2 nanoflowers (NFs). The proposed growth mechanism highlighted the influence of precursor concentration on nucleation sites, affecting the preferred crystallographic plane growth of rutile TiO 2 and nanorod alignment on the FTO substrate. Intriguingly, TiO 2 NRF films prepared with 1.0 mL of titanium butoxide exhibited a maximum photocurrent density of 3.58 mA.cm − 2 at 1.23 V versus (vs.) the reversible hydrogen electrode (RHE), along with a maximum photoconversion efficiency of 0.69%. The enhanced photocurrent density and photoconversion efficiency were attributed to the optimum thickness in the range of 4.52-7.31 µm, which caused the film to be formed with a unique morphology of the primary layer with well-vertically aligned nanorods and the second layer of flowers consisting of numerous rods stacked on top of one another. This study demonstrates the importance of designing semiconductors with 1D nanorod/3D nanoflower structures as high-performance photoelectrodes for PEC water splitting. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {15--31} doi = {10.9767/bcrec.20061}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20061} }
Refworks Citation Data :
Titanium dioxide (TiO2) has been considered as one of the most promising photocatalysts for photoelectrochemical (PEC) water splitting. Therefore, numerous efforts have been devoted to improving its PEC water splitting performance. In this study, TiO2 nanorod/nanoflower (NRF) films with controlled morphology were synthesized on fluorine-doped tin oxide (FTO) glass substrates by following a facile one-step hydrothermal method. The TiO2 NRF films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectrometer (EDS), and ultraviolet-visible (UV-Vis) spectrophotometer. FE-SEM showed that the TiO2 films are composed of a simultaneous growth of a primary layer of TiO2 nanorod arrays (NRAs) and a second layer of TiO2 nanoflowers (NFs). The proposed growth mechanism highlighted the influence of precursor concentration on nucleation sites, affecting the preferred crystallographic plane growth of rutile TiO2 and nanorod alignment on the FTO substrate. Intriguingly, TiO2 NRF films prepared with 1.0 mL of titanium butoxide exhibited a maximum photocurrent density of 3.58 mA.cm−2 at 1.23 V versus (vs.) the reversible hydrogen electrode (RHE), along with a maximum photoconversion efficiency of 0.69%. The enhanced photocurrent density and photoconversion efficiency were attributed to the optimum thickness in the range of 4.52-7.31 µm, which caused the film to be formed with a unique morphology of the primary layer with well-vertically aligned nanorods and the second layer of flowers consisting of numerous rods stacked on top of one another. This study demonstrates the importance of designing semiconductors with 1D nanorod/3D nanoflower structures as high-performance photoelectrodes for PEC water splitting. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)