skip to main content

Bimetallic Ni-Fe Supported by Gadolinium Doped Ceria (GDC) Catalyst for CO2 Methanation

1Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Building 452 Kawasan Science and Technology B. J. Habibie Serpong, Tangerang Selatan, Banten, 15314, Indonesia

2Shizuoka University, 3-5-1 Johoku, Hamamatsu-shi, Shizuoka-ken, 432-8561, Japan

3Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No 2, Yogyakarta, 55281, Indonesia

4 Unconventional Geo-Resources Research Center, Faculty of Engineering, UGM, Jl. Grafika No.2, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

View all affiliations
Received: 29 Dec 2023; Revised: 30 Jan 2024; Accepted: 31 Jan 2024; Available online: 5 Feb 2024; Published: 30 Apr 2024.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

CO2 conversion into fuels and high value-added chemical feedstocks, such as methane, has gained novel interest as a crucial process for further manufacturing multi-carbon products. Methane, CH4, becomes a promising alternative for environmental and energy supply issues. Nickel-based catalysts were found to be very active and selective for CH4 production. The use of promoter and support material to develop high activity, high selectivity, and durable catalysts for CO2 methanation at low temperature is a challenge. Gadolinium-Doped Ceria (GDC) has been known as material for Solid Oxide Fuel Cell (SOFC) and Solid Oxide Electrolysis Cell (SOEC) due to higher ionic conductivity and lower operating temperatures. However, few researches have been done regarding to CO2 methanation over GDC as catalyst support so far. In this present work, CO2 methanation was investigated over bimetallic Ni-Fe catalyst supported by GDC. The results showed that CH4 production rate by using Ni-Fe/GDC catalyst was higher than that of GDC at all reaction temperatures carried on. Ni-Fe/GDC showed remarkable CH4 production rate as of 17.73 mmol.gcat−1.h−1 at 280 °C. No catalytic activity was produced by GDC catalyst only. The highest CO2 conversion (46.50%) was observed at 280 °C, with almost 100% selectivity to CH4. The turnover frequency (TOF) value of Ni-Fe/GDC (4529.32 h−1) was the highest than that of Ni and common CO2 methanation catalyst, Ni/Al2O3 catalysts at 280 °C, further displaying the outstanding low-temperature catalytic activity. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Carbon dioxide; Catalyst; CO2 Methanation; Gadolinium-Doped Ceria; Nickel-Iron Catalyst
Funding: Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (JST-CREST) under contract JPMJCR1343

Article Metrics:

  1. Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y., Davis, S.J. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 572(7769), 373–377. DOI: 10.1038/s41586-019-1364-3
  2. Li, Y., Men, Y., Liu, S., Wang, J., Wang, K., Tang, Y., An, W., Pan, X., Li, L. (2021). Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Applied Catalysis B: Environmental, 293, 120206. DOI: 10.1016/j.apcatb.2021.120206
  3. Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., González-Marcos, J.A., González-Velasco, J.R. (2018). Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 238, 393–403. DOI: 10.1016/j.apcatb.2018.07.034
  4. Li, M.M.J., Chen, C., Ayvall, T., Suo, H., Zheng, J., Teixeira, I.F., Ye, L., Zou, H., O’Hare, D., Tsang, S.C.E. (2018). CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors. ACS Catalysis, 8 (5), 4390–4401. DOI: 10.1021/acscatal.8b00474
  5. Li, L., Zeng, W., Song, M., Wu, X., Li, G., Hu, C. (2022). Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts, 12 (2), 1–24. DOI: 10.3390/catal12020244
  6. Frontera, P., Macario, A., Malara, A., Antonucci, V., Modafferi, V., Antonucci, P.L. (2020). Simultaneous methanation of carbon oxides on nickel-iron catalysts supported on ceria-doped gadolinia. Catalysis Today, 357, 565–572. DOI: 10.1016/j.cattod.2019.05.065
  7. Han, F., Liu, Q., Li, D., Ouyang, J. (2023). An emerging and high-performance sepiolite-supported Ni catalyst for low-temperature CO2 methanation: The critical role of hydroxyl groups. Journal of Environmental Chemical Engineering, 11 (5), 110331. DOI: 10.1016/j.jece.2023.110331
  8. Malara, A., Frontera, P., Antonucci, P., Macario, A. (2020). Smart recycling of carbon oxides: Current status of methanation reaction. Current Opinion in Green and Sustainable Chemistry, 26, 100376. DOI: 10.1016/j.cogsc.2020.100376
  9. Fan, W.K., Tahir, M. (2021). Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review. Journal of Environmental Chemical Engineering, 9 (4), 105460. DOI: 10.1016/j.jece.2021.105460
  10. Younas, M., Loong Kong, L., Bashir, M.J.K., Nadeem, H., Shehzad, A., Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30 (11), 8815–8831. DOI: 10.1021/acs.energyfuels.6b01723
  11. Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., Prabhakaran, P., Bajohr, S. (2016). Review on methanation – From fundamentals to current projects. Fuel, 166, 276–296. DOI: https://doi.org/10.1016/j.fuel.2015.10.111
  12. Italiano, C., Llorca, J., Pino, L., Ferraro, M., Antonucci, V., Vita, A. (2020). CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Applied Catalysis B: Environmental, 264, 118494. DOI: 10.1016/j.apcatb.2019.118494
  13. Lv, C., Xu, L., Chen, M., Cui, Y., Wen, X., Li, Y., Wu, C., Yang, B., Miao, Z., Hu, X., Shou, Q. (2020). Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward CO2 Methanation. Frontiers in Chemistry, 8, 269. DOI: 10.3389/fchem.2020.00269
  14. Tsiotsias, A.I., Charisiou, N.D., Yentekakis, I. V, Goula, M.A. (2021). Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials, 11 (1), 28. DOI: 10.3390/nano11010028
  15. Marconi, E., Tuti, S., Luisetto, I. (2019). Structure-sensitivity of CO2 methanation over nanostructured Ni supported on CeO2 nanorods. Catalysts, 9(4), 375. DOI: 10.3390/catal9040375
  16. Winter, L.R., Gomez, E., Yan, B., Yao, S., Chen, J.G. (2018). Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation. Applied Catalysis B: Environmental, 224, 442–450. DOI: 10.1016/j.apcatb.2017.10.036
  17. Lee, W.J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2–19. DOI: 10.1016/j.cattod.2020.02.017
  18. Kristiani, A., Takeishi, K. (2022). CO2 methanation over nickel-based catalyst supported on yttria-stabilized zirconia. Catalysis Communications, 165, 106435. DOI: 10.1016/j.catcom.2022.106435
  19. Hu, F., Jin, C., Lim, K.H., Li, C., Song, G., Bella, Wang, T., Ye, R., Lu, Z.H., Feng, G., Zhang, R., Kawi, S. (2023). Promoting hydrogen spillover of NiFe/CeO2 catalyst with plasma-treatment for CO2 methanation. Fuel Processing Technology, 250, 107873. DOI: 10.1016/j.fuproc.2023.107873
  20. Meng, F., Zhong, P., Li, Z., Cui, X., Zheng, H. (2014). Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation. Journal of Chemistry, 2014, 534842. DOI: 10.1155/2014/534842
  21. De Piano, G., Gamboa, J.J.A., Condó, A.M., Bengió, S., Gennari, F.C. (2022). Bimetallic Ni-Fe catalysts for methanation of CO2: Effect of the support nature and reducibility. Applied Catalysis A: General, 634, 118540. DOI: 10.1016/j.apcata.2022.118540
  22. Naseer, A., Hussain, M., Shakir, I., Abbas, Q., Yilmaz, D., Zahra, M., Raza, R. (2020). The robust catalysts (Ni1−x–Mox/doped ceria and Zn1−x–Mox/doped ceria, x = 0.1 and 0.3) for efficient natural gas reforming in solid oxide fuel cells. Electrochimica Acta, 361, 137033. DOI: 10.1016/j.electacta.2020.137033
  23. Vita, A., Italiano, C., Pino, L., Frontera, P., Ferraro, M., Antonucci, V. (2018). Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation. Applied Catalysis B: Environmental, 226, 384–395. DOI: 10.1016/j.apcatb.2017.12.078
  24. Frontera, P., Macario, A., Monforte, G., Bonura, G., Ferraro, M., Dispenza, G., Antonucci, V., Aricò, A.S., Antonucci, P.L. (2017). The role of Gadolinia Doped Ceria support on the promotion of CO2 methanation over Ni and Ni–Fe catalysts. International Journal of Hydrogen Energy, 42 (43), 26828–26842. DOI: 10.1016/j.ijhydene.2017.09.025
  25. Cheng, C., Shen, D., Xiao, R., Wu, C. (2017). Methanation of syngas (H2/CO) over the different Ni-based catalysts. Fuel, 189, 419–427. DOI: 10.1016/j.fuel.2016.10.122
  26. Boukha, Z., Bermejo-López, A., De-La-Torre, U., González-Velasco, J.R. (2023). Behavior of nickel supported on calcium-enriched hydroxyapatite samples for CCU-methanation and ICCU-methanation processes. Applied Catalysis B: Environmental, 338, 122989. DOI: 10.1016/j.apcatb.2023.122989
  27. He, F., Zhuang, J., Lu, B., Liu, X., Zhang, J., Gu, F., Zhu, M., Xu, J., Zhong, Z., Xu, G., Su, F. (2021). Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Applied Catalysis B: Environmental, 293, 120218. DOI: 10.1016/j.apcatb.2021.120218
  28. Frontera, P., Macario, A., Malara, A., Modafferi, V., Mascolo, M.C., Candamano, S., Crea, F., Antonucci, P. (2018). CO2 and CO hydrogenation over Ni-supported materials. Functional Materials Letters, 11(5), 1–4. DOI: 10.1142/S1793604718500613
  29. Weber, S., Abel, K.L., Zimmermann, R.T., Huang, X., Bremer, J., Rihko-Struckmann, L.K., Batey, D., Cipiccia, S., Titus, J., Poppitz, D., Kübel, C., Sundmacher, K., Gläser, R., Sheppard, T.L. (2020). Porosity and structure of hierarchically porous Ni/Al2O3 catalysts for CO2 methanation. Catalysts, 10(12), 1–22. DOI: 10.3390/catal10121471
  30. Sun, Q., Fu, Z., Yang, Z. (2018). Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. Ceramics International, 44 (4), 3707–3711. DOI: 10.1016/j.ceramint.2017.11.149
  31. Burger, T., Augenstein, H.M.S., Hnyk, F., Döblinger, M., Köhler, K., Hinrichsen, O. (2020). Targeted Fe-Doping of Ni−Al Catalysts via the Surface Redox Reaction Technique for Unravelling its Promoter Effect in the CO2 Methanation Reaction. ChemCatChem, 12(2), 649–662. DOI: 10.1002/cctc.201901331
  32. Serrer, M.A., Gaur, A., Jelic, J., Weber, S., Fritsch, C., Clark, A.H., Saraçi, E., Studt, F., Grunwaldt, J.D. (2020). Structural dynamics in Ni-Fe catalysts during CO2 methanation-role of iron oxide clusters. Catalysis Science and Technology, 10(22), 7542–7554. DOI: 10.1039/d0cy01396j
  33. Hossain, M.Z., Chowdhury, M.B.I., Alsharari, Q., Jhawar, A.K., Charpentier, P.A. (2017). Effect of mesoporosity of bimetallic Ni-Ru-Al2O3 catalysts for hydrogen production during supercritical water gasification of glucose. Fuel Processing Technology, 159, 55–66. DOI: 10.1016/j.fuproc.2017.01.013
  34. Hossain, M.Z., Chowdhury, M.B.I., Jhawar, A.K., Xu, W.Z., Biesinger, M.C., Charpentier, P.A. (2018). Continuous Hydrothermal Decarboxylation of Fatty Acids and Their Derivatives into Liquid Hydrocarbons Using Mo/Al2O3 Catalyst. ACS Omega, 3(6), 7046–7060. DOI: 10.1021/acsomega.8b00562

Last update:

No citation recorded.

Last update:

No citation recorded.