skip to main content

Optimization of Cu2O Thickness to Enhance Photocatalytic Properties of Electrodeposited Cu2O/FTO Photoanode

1Department of Physics Education, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

2Department of Applied Physics, Tunghai University, Taichung 407224, Taiwan

3Research Center for Advanced Materials, National Research, and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia

Received: 7 Dec 2023; Revised: 6 Feb 2024; Accepted: 7 Feb 2024; Available online: 10 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Currently, n-type cuprous oxide (Cu2O) is a promising material as photocatalyst because of its energy gap of 2 eV that absorbs visible light up to a wavelength of 600 nm. As a photoelectrode, the thickness of Cu2O is crucial, where the improper thickness may worsen the photocatalytic properties. This work aimed to enhance the photocatalytic properties of Cu2O electrodeposited on fluorine-doped tin oxide (FTO), called Cu2O/FTO, by optimizing the Cu2O thickness. The thickness of Cu2O was controlled by adjusting the deposition time in the electrochemical deposition of Cu2O/FTO. By changing the deposition time from 5 to 45 min, the morphology of Cu2O changed from a leaf-like shape to an irregular facet shape with highly dense coverage, and the average thickness increased from 370 to 1100 nm. The increasing Cu2O thickness resulted in the increasing light absorption. The Cu2O/FTO demonstrated anodic photocurrent, which increased with the Cu2O thickness up to a threshold value of 1000 nm (35 min deposition time). At a thickness of 1000 nm, Cu2O/FTO achieved the highest photocurrent (150 and 58 µA under irradiation of 365 and 470 nm, respectively) due to the highly dense morphology and high absorption. In addition, with a thickness of 1000 nm, the charge diffusion was still good. Further, the increase of Cu2O film thickness higher than 1000 nm caused low photocatalytic properties even though the morphology was highly dense, and the absorption was the highest. This condition could be due to the relatively too-high resistance of Cu2O that caused poor charge diffusion. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Cu2O; thickness; photocatalytic properties; electrochemical deposition; deposition time
Funding: Ministry of Science and Technology (MOST) Taiwan under contract MOST 111-2112-M-029-009 and 112-2112-M-029 -005

Article Metrics:

  1. Lin, L., Hisatomi, T., Chen, S., Takata, T., Domen, K. (2020). Visible-light-driven photocatalytic water splitting: Recent progress and challenges. Trends in Chemistry, 2, 813–824. DOI: https://doi.org/10.1016/j.trechm.2020.06.006
  2. Nazim, M., Khan, A.A.P., Asiri, A.M., Kim, J.H. (2021). Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: Synthesis, dye removal, and kinetic studies at room temperature. ACS Omega, 6, 2601–2612. DOI: 10.1021/acsomega.0c04747
  3. Khasanah, R.A.N., Lin, H.-C., Ho, H.-Y., Peng, Y.-P., Lim, T.-S., Hsiao, H.-L., Wang, C.-R., Chuang, M.-C., Chien, F.S.-S. (2021). Studies on the substrate-dependent photocatalytic properties of Cu2O heterojunctions. RSC Advances, 11, 4935–4941. DOI: 10.1039/D0RA10681J
  4. Laidoudi, S., Bioud, A.Y., Azizi, A., Schmerber, G., Bartringer, J., Barre, S., Dinia, A. (2013). Growth and characterization of electrodeposited Cu2O thin films. Semiconductor Science and Technology, 28, 115005. DOI: 10.1088/0268-1242/28/11/115005
  5. Khasanah, R.A.N., Lin, H.-C., Ho, H.-Y., Peng, Y.-P., Hsiao, H.-L., Wang, C.-R., Chien, F.S.-S. (2022). Photoelectrocatalytic hydrolysis of ammonia borane by electrochemical deposited cuprous oxide on titanium dioxide nanotube arrays. International Journal of Hydrogen Energy, 47, 11203–11210. DOI: 10.1016/j.ijhydene.2022.01.167
  6. Koiki, B.A., Arotiba, O.A. (2020). Cu2O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: A review. RSC Advances, 10, 36514–36525. DOI: 10.1039/D0RA06858F
  7. Hossain, M.A., Al-Gaashani, R., Hamoudi, H., Al Marri, M.J., Hussein, I.A., Belaidi, A., Merzougui, B.A., Alharbi, F.H., Tabet, N. (2017). Controlled growth of Cu2O thin films by electrodeposition approach. Materials Science in Semiconductor Processing, 63, 203–211. DOI: 10.1016/j.mssp.2017.02.012
  8. Bagal, I.V., Chodankar, N.R., Hassan, M.A., Waseem, A., Johar, M.A., Kim, D.-H., Ryu, S.-W. (2019). Cu2O as an emerging photocathode for solar water splitting - a status review. International Journal of Hydrogen Energy, 44, 21351–21378. DOI: 10.1016/j.ijhydene.2019.06.184
  9. Son, M.-K. (2021). Design and demonstration of large scale Cu2O photocathodes with metal grid structure for photoelectrochemical water splitting. Energies, 14, 7422. DOI: 10.3390/en14217422
  10. McShane, C.M., Choi, K.-S. (2009). Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Journal of the American Chemical Society, 131, 2561–2569. DOI: 10.1021/ja806370s
  11. Chen, Y.-C., Chen, Y.-J., Dong, P.-H., Hsu, Y.-K. (2020). Benchmarked photoelectrochemical water splitting by nickel-doped n-type cuprous oxide. ACS Applied Energy Materials, 3, 1373–1380. DOI: 10.1021/acsaem.9b01781
  12. Khasanah, R.A.N., Lee, C.-H., Li, Y.C., Chen, C.-H., Lim, T.-S., Wang, C.-R., Chang, P.-Y., Sheu, H.-S., Chien, F.S.-S. (2022). Enhancement of photocatalytic activity of electrodeposited Cu2O by reducing oxygen vacancy density. ACS Applied Energy Materials, 5, 15326–15332. DOI: 10.1021/acsaem.2c02963
  13. Dolai, S., Das, S., Hussain, S., Bhar, R., Pal, A.K. (2017). Cuprous oxide (Cu2O) thin films prepared by reactive d.c. Sputtering technique. Vacuum, 141, 296–306. DOI: 10.1016/j.vacuum.2017.04.033
  14. Karapetyan, A., Reymers, A., Giorgio, S., Fauquet, C., Sajti, L., Nitsche, S., Nersesyan, M., Gevorgyan, V., Marine, W. (2015). Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties. Journal of Luminescence, 159, 325–332. DOI: 10.1016/j.jlumin.2014.10.058
  15. Saadaldin, N., Alsloum, M.N., Hussain, N. (2015). Preparing of copper oxides thin films by chemical bath deposition (CBD) for using in environmental application. Energy Procedia, 74, 1459–1465. DOI: 10.1016/j.egypro.2015.07.794
  16. Abdelfatah, M., Ledig, J., El-Shaer, A., Sharafeev, A., Lemmens, P., Mosaad, M.M., Waag, A., Bakin, A. (2016). Effect of potentiostatic and galvanostatic electrodeposition modes on the basic parameters of solar cells based on Cu2O thin films. ECS Journal of Solid State Science and Technology, 5, Q183–Q187. DOI: 10.1149/2.0191606jss
  17. Rahal, H., Kihal, R., Affoune, A.M., Rahal, S. (2020). Effect of solution pH on properties of cuprous oxide thin films prepared by electrodeposition from a new bath. Journal of Electronic Materials, 49, 4385–4391. DOI: 10.1007/s11664-020-08093-y
  18. Mohd Hanif, A.S., Azmal, S.A., bin Ahmad, M.K., Mohamad, F. (2015). Effect of deposition time on the electrodeposited n-Cu2O thin film. Applied Mechanics and Materials, 773, 677–681. DOI: 10.4028/www.scientific.net/AMM.773-774.677
  19. Kalubowila, K.D.R.N., Gunawardhana, L.K.A.D.D.S., Wijesundera, R.P., Siripala, W. (2014). Methods for improving n-type photoconductivity of electrodeposited Cu2O thin films. Semiconductor Science and Technology, 29, 075012. DOI: 10.1088/0268-1242/29/7/075012
  20. Camera-Roda, G., Santarelli, F. (2007). Optimization of the thickness of a photocatalytic film on the basis of the effectiveness factor. Catalysis Today, 129, 161–168. DOI: 10.1016/j.cattod.2007.06.062
  21. Osorio-Aguilar, D.-M. (2023). Saldarriaga-Noreña, H.-A., Murillo-Tovar, M.-A., Vergara-Sánchez, J., Ramírez-Aparicio, J., Magallón-Cacho, L., García-Betancourt, M.-L. Adsorption and photocatalytic degradation of methylene blue in carbon nanotubes: A review with bibliometric analysis. Catalysts, 13, 1480. DOI: 10.3390/catal13121480
  22. Qi, G., Liu, M., Tang, C., Chang, J., Yang, C., Liu, F., Ning, X., Yang, Y. (2021). Conductivity controlling of Cu2O film photoelectrode for water splitting by a novel electrochemical approach - differential potentiostatic deposition. International Journal of Hydrogen Energy, 46, 2878–2889. DOI: 10.1016/j.ijhydene.2020.04.176
  23. Ait Hssi, A., Atourki, L., Labchir, N., Ouafi, M., Abouabassi, K., Elfanaoui, A., Ihlal, A., Bouabid, K. (2020). Optical and dielectric properties of electrochemically deposited p-Cu2O films. Materials Research Express, 7, 016424. DOI: 10.1088/2053-1591/ab6772
  24. Yang, Y., Han, J., Ning, X., Cao, W., Xu, W., Guo, L. (2014). Controllable morphology and conductivity of electrodeposited Cu2O thin film: Effect of surfactants. ACS Applied Materials & Interfaces, 6, 22534–22543. DOI: 10.1021/am506657v
  25. Yu, X., Tang, X., Li, J., Zhang, J., Kou, S., Zhao, J., Yao, B. (2017). Nucleation mechanism and optoelectronic properties of Cu2O onto ito electrode in the electrochemical deposition process. Journal of The Electrochemical Society, 164, D999–D1005. DOI: 10.1149/2.1081714jes
  26. Brandt, I.S., Zoldan, V.C., Stenger, V., Plá Cid, C.C., Pasa, A.A., Oliveira, T.J., Aarão Reis, F.D.A. (2015). Substrate effects and diffusion dominated roughening in Cu2O electrodeposition. Journal of Applied Physics, 118, 145303. DOI: 10.1063/1.4932642
  27. Wang, P., Wu, H., Tang, Y., Amal, R., Ng, Y.H. (2015). Electrodeposited Cu2O as photoelectrodes with controllable conductivity type for solar energy conversion. Journal of Physical Chemistry C, 119, 26275–26282. DOI: 10.1021/acs.jpcc.5b07276
  28. Taher, S.J., Barzinjy, A.A., Hamad, S.M. (2020). The effect of deposition time on the properties of Cu2O nanocubes using an electrochemical deposition method. Journal of Electronic Materials, 49, 7532–7540. DOI: 10.1007/s11664-020-08495-y
  29. Benz, J., Hering, K.P., Kramm, B., Polity, A., Klar, P.J., Siah, S.C., Buonassisi, T. (2017). The influence of nitrogen doping on the electrical and vibrational properties of Cu2O. Physica Status Solidi B, 254, 1600421. DOI: 10.1002/pssb.201600421
  30. Chen, A., Long, H., Li, X., Li, Y., Yang, G., Lu, P. (2009). Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum, 83, 927–930. DOI: 10.1016/j.vacuum.2008.10.003
  31. Elmahdy, M.M., El-Shaer, A. (2019). Structural, optical and dielectric investigations of electrodeposited p-type Cu2O. Journal of Materials Science: Materials in Electronics, 30, 19894-19905. DOI: 10.1007/s10854-019-02356-z
  32. Lopes, T., Andrade, L., Le Formal, F., Gratzel, M., Sivula, K., Mendes, A. (2014). Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy. Physical Chemistry Chemical Physics, 16, 16515–16523. DOI: 10.1039/C3CP55473B
  33. Lemlikchi, W., Khaldi, S., Mecherri, M.O., Lounici, H., Drouiche, N. (2012). Degradation of disperse red 167 AZO dye by bipolar electrocoagulation. Separation Science and Technology, 47, 1682–1688. DOI: 10.1080/01496395.2011.647374
  34. Anantha, M.S., Olivera, S., Hu, C., Jayanna, B.K., Reddy, N., Venkatesh, K., Muralidhara, H.B., Naidu, R. (2020). Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environmental Technology & Innovation, 17, 100612. DOI: 10.1016/j.eti.2020.100612
  35. Jiang, C., Moniz, S.J.A., Wang, A., Zhang, T., Tang, J. (2017). Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 46, 4645–4660. DOI: 10.1039/C6CS00306K
  36. Toe, C.Y., Scott, J., Amal, R., Ng, Y.H. (2019). Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40, 191–211. DOI: 10.1016/j.jphotochemrev.2018.10.001
  37. Nandjou, F., Haussener, S. (2022). Modeling the photostability of solar water-splitting devices and stabilization strategies. ACS Applied Materials & Interfaces, 14, 43095–43108. DOI: 10.1021/acsami.2c08204
  38. Yang, Y., Han, J., Ning, X., Su, J., Shi, J., Cao, W., Xu, W. (2016). Photoelectrochemical stability improvement of cuprous oxide (Cu2O) thin films in aqueous solution. International Journal of Energy Research, 40, 112–123. DOI: 10.1002/er.3328

Last update:

No citation recorded.

Last update:

No citation recorded.