skip to main content

Precursor-concentration-controlled Morphology of TiO2 Nanorod/Nanoflower Films for Enhanced Photoelectrochemical Water Splitting and Investigating Their Growth Mechanism

1Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

2Faculty of Electric and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

3Faculty of Technical Education and Vocational, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

Received: 24 Oct 2023; Revised: 7 Dec 2023; Accepted: 7 Dec 2023; Available online: 11 Dec 2023; Published: 30 Apr 2024.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Titanium dioxide (TiO2) has been considered as one of the most promising photocatalysts for photoelectrochemical (PEC) water splitting. Therefore, numerous efforts have been devoted to improving its PEC water splitting performance. In this study, TiO2 nanorod/nanoflower (NRF) films with controlled morphology were synthesized on fluorine-doped tin oxide (FTO) glass substrates by following a facile one-step hydrothermal method. The TiO2 NRF films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectrometer (EDS), and ultraviolet-visible (UV-Vis) spectrophotometer. FE-SEM showed that the TiO2 films are composed of a simultaneous growth of a primary layer of TiO2 nanorod arrays (NRAs) and a second layer of TiO2 nanoflowers (NFs). The proposed growth mechanism highlighted the influence of precursor concentration on nucleation sites, affecting the preferred crystallographic plane growth of rutile TiO2 and nanorod alignment on the FTO substrate. Intriguingly, TiO2 NRF films prepared with 1.0 mL of titanium butoxide exhibited a maximum photocurrent density of 3.58 mA.cm2 at 1.23 V versus (vs.) the reversible hydrogen electrode (RHE), along with a maximum photoconversion efficiency of 0.69%. The enhanced photocurrent density and photoconversion efficiency were attributed to the optimum thickness in the range of 4.52-7.31 µm, which caused the film to be formed with a unique morphology of the primary layer with well-vertically aligned nanorods and the second layer of flowers consisting of numerous rods stacked on top of one another. This study demonstrates the importance of designing semiconductors with 1D nanorod/3D nanoflower structures as high-performance photoelectrodes for PEC water splitting. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: TiO2 1D nanorod/3D nanoflower film; Hydrothermal method; Photoelectrochemical water splitting; Growth mechanism; photocatalyst

Article Metrics:

  1. Jiang, L., Li, H., Mu, J., Ji, Z. (2018). Manipulation of surface plasmon resonance of sputtered gold-nanoparticles on TiO2 nanostructured films for enhanced photoelectrochemical water splitting efficiency. Thin Solid Films, 661, 32–39. DOI: 10.1016/j.tsf.2018.07.010
  2. Li, Z., Shi, L., Franklin, D., Koul, S., Kushima, A., Yang, Y. (2018). Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 51, 400–407. DOI: 10.1016/j.nanoen.2018.06.083
  3. Kim, T., Patil, S.S., Lee, K. (2022). Nanospace-confined worm-like BiVO4 in TiO2 space nanotubes (SPNTs) for photoelectrochemical hydrogen production. Electrochimica Acta, 432, 141213. DOI: 10.1016/j.electacta.2022.141213
  4. Esmaili, H., Kowsari, E., Sarabadani Tafreshi, S., Ramakrishna, S., de Leeuw, N.H., Abdouss, M. (2022). TiO2 nanoarrays modification by a novel Cobalt-heteroatom doped graphene complex for photoelectrochemical water splitting: An experimental and theoretical study. Journal of Molecular Liquids, 356, 118960. DOI: 10.1016/j.molliq.2022.118960
  5. Han, M., Zhang, Z., Li, B., Hu, X., Wang, Z. (2022). Combined heterostructures between Bi2S3 nanosheets and H2-treated TiO2 nanorods for enhanced photoelectrochemical water splitting. Applied Surface Science, 598, 153850. DOI: 10.1016/j.apsusc.2022.153850
  6. Zhou, T., Wang, J., Chen, S., Bai, J., Li, J., Zhang, Y., Li, L., Xia, L., Rahim, M., Xu, Q., Zhou, B. (2020). Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Applied Catalysis B: Environmental, 267(800), 118599. DOI: 10.1016/j.apcatb.2020.118599
  7. Li, J., McClure, J.P., Fu, R., Jiang, R., Chu, D. (2018). Understanding charge transfer dynamics in QDs-TiO2 nanorod array photoanodes for solar fuel generation. Applied Surface Science, 429, 48–54. DOI: 10.1016/j.apsusc.2017.06.090
  8. Moridon, S.N.F., Arifin, K., Yunus, R.M., Minggu, L.J., Kassim, M.B. (2022). Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: A review. Ceramics International, 48(5), 5892–5907. DOI: 10.1016/j.ceramint.2021.11.199
  9. Anaam, S.A.A., Saim, H., Sahdan, M.Z., Al-Gheethi, A. (2019). Defective TiO2 with intrinsic point defects for photocatalytic hydrogen production: A review. International Journal of Nanoelectronics and Materials, 12(4), 495–516
  10. Ahmad, A., Yerlikaya, G., Zia-ur-Rehman, Paksoy, H., Kardaş, G. (2020). Enhanced photoelectrochemical water splitting using gadolinium doped titanium dioxide nanorod array photoanodes. International Journal of Hydrogen Energy, 45(4), 2709–2719. DOI: 10.1016/j.ijhydene.2019.11.117
  11. Li, T., Ding, D. (2020). Photoelectrochemical water splitting with black Ni/Si-doped TiO2 nanostructures. International Journal of Hydrogen Energy, 45(41), 20983–20992. DOI: 10.1016/j.ijhydene.2020.05.182
  12. Tong, M.-H., Wang, T.-M., Lin, S.-W., Chen, R., Jiang, X., Chen, Y.-X., Lu, C.-Z. (2023). Ultra-thin carbon doped TiO2 nanotube arrays for enhanced visible-light photoelectrochemical water splitting. Applied Surface Science, 623, 156980. DOI: 10.1016/j.apsusc.2023.156980
  13. Kumar, M.P., Jagannathan, R., Ravichandran, S. (2020). Photoelectrochemical System for Unassisted High-Efficiency Water-Splitting Reactions Using N-Doped TiO2 Nanotubes. Energy and Fuels, 34(7), 9030–9036. DOI: 10.1021/acs.energyfuels.0c00634
  14. Park, J., Lee, T.H., Kim, C., Lee, S.A., Choi, M.J., Kim, H., Yang, J.W., Lim, J., Jang, H.W. (2021). Hydrothermally obtained type-Ⅱ heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 295, 120276. DOI: 10.1016/j.apcatb.2021.120276
  15. Lee, M.G., Yang, J.W., Park, H., Moon, C.W., Andoshe, D.M., Park, J., Moon, C.K., Lee, T.H., Choi, K.S., Cheon, W.S., Kim, J.J., Jang, H.W. (2022). Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Letters, 14(1), 1–15. DOI: 10.1007/s40820-022-00795-8
  16. Sang, L., Ge, H., Sun, B. (2019). Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting. International Journal of Hydrogen Energy, 44(30), 15787–15794. DOI: 10.1016/j.ijhydene.2018.09.094
  17. Uyen, N.N., Thi, L., Tuyen, C., Hieu, L.T., Thu, T., Nguyen, T., Thao, H.P. (2022). TiO2 Nanowires on TiO2 Nanotubes Arrays (TNWs/TNAs) Decorated with Au Nanoparticles and Au Nanorods for Efficient PhotoelectrochemicalWater Splitting and Photocatalytic Degradation of Methylene Blue. Coatings, 12(12), 1957. DOI: 10.3390/coatings12121957
  18. Hou, X., Li, Z., Fan, L., Yuan, J., Lund, P.D., Li, Y. (2021). Effect of Ti foil size on the micro sizes of anodic TiO2 nanotube array and photoelectrochemical water splitting performance. Chemical Engineering Journal, 425, 131415. DOI: 10.1016/j.cej.2021.131415
  19. Chen, S., Li, C., Hou, Z. (2020). The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 55(14), 5969–5981. DOI: 10.1007/s10853-020-04379-y
  20. Feng, T., Yam, F.K. (2023). The influence of hydrothermal treatment on TiO2 nanostructure films transformed from titanates and their photoelectrochemical water splitting properties. Surfaces and Interfaces, 38, 102767. DOI: 10.1016/j.surfin.2023.102767
  21. Yoon, D.H., Biswas, M.R.U.D., Sakthisabarimoorthi, A. (2022). Impact of crystalline core/amorphous shell structured black TiO2 nanoparticles on photoelectrochemical water splitting. Optical Materials, 133, 113030. DOI: 10.1016/j.optmat.2022.113030
  22. Joy, J., Mathew, J., George, S.C. (2018). Nanomaterials for photoelectrochemical water splitting – review. International Journal of Hydrogen Energy, 43(10), 4804–4817. DOI: 10.1016/j.ijhydene.2018.01.099
  23. Zhao, H., Lei, Y. (2020). 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 10(28), 2001460. DOI: 10.1002/aenm.202001460
  24. Lu, Y.W., Tseng, Y., Lee, J.S., Lee, W.J. (2016). Lateral-to-vertical growth transition of TiO2 nanorods grown on FTO-glass substrate by hydrothermal process. Digest Journal of Nanomaterials and Biostructures, 11(2), 507–515
  25. Ma, J., Ren, W., Zhao, J., Yang, H. (2016). Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells. Journal of Alloys and Compounds, 692, 1004–1009. DOI: 10.1016/j.jallcom.2016.09.134
  26. Desai, N.D., Khot, K.V., Dongale, T., Musselman, K.P., Bhosale, P.N. (2019). Development of dye sensitized TiO2 thin films for efficient energy harvesting. Journal of Alloys and Compounds, 790, 1001–1013. DOI: 10.1016/j.jallcom.2019.03.246
  27. Park, K.H., Dhayal, M. (2014). Simultaneous growth of rutile TiO2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC. Electrochemistry Communications, 49, 47–50. DOI: 10.1016/j.elecom.2014.09.011
  28. Talib, A., Ahmad, M.K., Ahmad, N., Nafarizal, N., Mohamad, F., Soon, C.F., Suriani, A.B., Mamat, M.H., Murakami, K., Shimomura, M. (2020). Performance of dye-sensitized solar cell using size-controlled synthesis of TiO2 nanostructure. International Journal of Integrated Engineering, 12(2), 106–114. DOI: 10.30880/ijie.2020.12.02.013
  29. Norazlina, A., Mohamad, F., Talib, A., Ahmad, M.K., Nafarizal, N., Soon, C.F., Suriani, A.B., Mamat, M.H., Murakami, K., Shimomura, M. (2020). Fabrication rutile-phased TiO2 film with different concentration of hydrochloric acid towards the performance of dye-sensitized solar cell. International Journal of Integrated Engineering, 12(2), 115–124. DOI: 10.30880/ijie.2020.12.02.014
  30. Said, N.D.M., Sahdan, M.Z., Nayan, N., Saim, H., Adriyanto, F., Bakri, A.S., Morsin, M. (2018). Difference in structural and chemical properties of sol–gel spin coated Al doped TiO2, Y doped TiO2 and Gd doped TiO2 based on trivalent dopants. RSC Advances, 8(52), 29686–29697. DOI: 10.1039/C8RA03950J
  31. John, K.I., Adenle, A.A., Adeleye, A.T., Onyia, I.P., Amune-matthews, C., Omorogie, M.O. (2021). Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance. Chemical Physics Letters, 776, 138725. DOI: 10.1016/j.cplett.2021.138725
  32. Khot, A.C., Desai, N.D., Khot, K. V., Salunkhe, M.M., Chougule, M.A., Bhave, T.M., Kamat, R.K., Musselman, K.P., Dongale, T.D. (2018). Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature. Materials and Design, 151, 37–47. DOI: 10.1016/j.matdes.2018.04.046
  33. Dhandayuthapani, T., Sivakumar, R., Ilangovan, R. (2016). Growth of micro flower rutile TiO2 films by chemical bath deposition technique: Study on the properties of structural, surface morphological, vibrational, optical and compositional. Surfaces and Interfaces, 4, 59–68. DOI: 10.1016/j.surfin.2016.09.006
  34. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112665. DOI: 10.1016/j.jphotochem.2020.112665
  35. Huang, H., Hou, X., Xiao, J., Zhao, L., Huang, Q., Chen, H., Li, Y. (2019). Effect of annealing atmosphere on the performance of TiO2 nanorod arrays in photoelectrochemical water splitting. Catalysis Today, 330, 189–194. DOI: 10.1016/j.cattod.2018.04.011
  36. Rahman, G., Joo, O.S. (2012). Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes. International Journal of Hydrogen Energy, 37(19), 13989–13997. DOI: 10.1016/j.ijhydene.2012.07.037
  37. Fàbrega, C., Andreu, T., Güell, F., Prades, J.D., Estradé, S., Rebled, J.M., Peiró, F., Morante, J.R. (2011). Effectiveness of nitrogen incorporation to enhance the photoelectrochemical activity of nanostructured TiO2:NH3 versus H2-N2 annealing. Nanotechnology, 22(23), 1–7. DOI: 10.1088/0957-4484/22/23/235403
  38. Issar, S., Poddar, P., Mehra, N.C., Mahapatro, A.K. (2017). Growth of flower-like patterns of TiO2 nanorods over FTO substrate. Integrated Ferroelectrics, 184(1), 166–171. DOI: 10.1080/10584587.2017.1368640
  39. Shao, Y., Tang, D., Sun, J., Lee, Y., Xiong, W. (2004). Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique. China Particuology, 2(3), 119–123. DOI: 10.1016/s1672-2515(07)60036-0
  40. Lu, X., Gao, S., Wu, P., Zhang, Z., Zhang, L., Li, X., Qin, X. (2023). In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-ray Diffraction, and FTIR Investigations of Rutile and TiO2II. Minerals, 13(5), 703. DOI: 10.3390/min13050703
  41. Mayabadi, A.H., Waman, V.S., Kamble, M.M., Ghosh, S.S., Gabhale, B.B., Rondiya, S.R., Rokade, A.V., Khadtare, S.S., Sathe, V.G., Pathan, H.M., Gosavi, S.W., Jadkar, S.R. (2014). Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. Journal of Physics and Chemistry of Solids, 75(2), 182–187. DOI: 10.1016/j.jpcs.2013.09.008
  42. Wang, S., Zhang, J., Smyth, J.R., Zhang, J., Liu, D., Zhu, X., Wang, X., Ye, Y. (2020). Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. Journal of Earth Science, 31(6), 1190–1199. DOI: 10.1007/s12583-020-1351-5
  43. Rathore, N., Kulshreshtha, A., Shukla, R.K., Sharma, D. (2021). Optical, structural and morphological properties of Fe substituted rutile phase TiO2 nanoparticles. Physica B: Condensed Matter, 600, 412609. DOI: 10.1016/j.physb.2020.412609
  44. Ben Naceur, J., Jrad, F., Souiwa, K., Ben Rhouma, F., Chtourou, R. (2021). Hydrothermal reaction time effect in wettability and photoelectrochemical properties of TiO2 nanorods arrays films. Optik, 239, 166794. DOI: 10.1016/j.ijleo.2021.166794
  45. Wu, W., Hong, M., Guo, X., Guo, J., Jiang, X. (2016). An approach toward TiO2 nanostructure growth with tunable properties: influence of concentration of titanium butoxide in a hydrothermal process. Journal of Materials Science: Materials in Electronics, 27(7), 7049–7054. DOI: 10.1007/s10854-016-4662-7
  46. Nguyen, M.H., Kim, K.S. (2021). Analysis on growth mechanism of TiO2 nanorod structures on FTO glass in hydrothermal process. Journal of Industrial and Engineering Chemistry, 104, 445–457. DOI: 10.1016/j.jiec.2021.08.045
  47. Ali, W., Jaffari, G.H., Khan, S., Liu, Y. (2018). Morphological control of 1D and 3D TiO2 nanostructures with ammonium hydroxide and TiO2 compact layer on FTO coated glass in hydrothermal synthesis. Materials Chemistry and Physics, 214, 48–55. DOI: 10.1016/j.matchemphys.2018.04.081
  48. Musa, M.Z., Mamat, M.H., Vasimalai, N., Shameem Banu, I.B., Malek, M.F., Ahmad, M.K., Suriani, A.B., Mohamed, A., Rusop, M. (2020). Fabrication and structural properties of flower-like TiO2 nanorod array films grown on glass substrate without FTO layer. Materials Letters, 273, 127902. DOI: 10.1016/j.matlet.2020.127902
  49. Jordan, V., Javornik, U., Plavec, J., Podgornik, A., Rečnik, A. (2016). Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Scientific Reports, 6, 1–13. DOI: 10.1038/srep24216
  50. Liu, B., Aydil, E.S. (2009). Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 131(11), 3985–3990. DOI: 10.1021/ja8078972
  51. Burungale, V.V., Satale, V.V., More, A.J., Sharma, K.K.K., Kamble, A.S., Kim, J.H., Patil, P.S. (2016). Studies on effect of temperature on synthesis of hierarchical TiO2 nanostructures by surfactant free single step hydrothermal route and its photoelectrochemical characterizations. Journal of Colloid and Interface Science, 470, 108–116. DOI: 10.1016/j.jcis.2016.02.026
  52. Wang, X., Xiao, Y., Zeng, D., Xie, C. (2015). Optimizing the packing density of TiO2 nanorod arrays for enhanced light harvesting by a light trapping effect and its photocatalytic decomposition of gaseous benzene. CrystEngComm, 17(5), 1151–1158. DOI: 10.1039/c4ce02129k
  53. Lin, J., Heo, Y.U., Nattestad, A., Sun, Z., Wang, L., Kim, J.H., Dou, S.X. (2014). 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Scientific Reports, 4, 1–8. DOI: 10.1038/srep05769
  54. Maria, A.S.M., Kumaresan, N., Ramamurthi, K., Sethuraman, K., Moorthy, B.S., Ramesh, B.R., Ganesh, V. (2018). Influence of heat treatment on the properties of hydrothermally grown 3D/1D TiO2 hierarchical hybrid microarchitectures over TiO2 seeded FTO substrates. Applied Surface Science, 449, 122–131. DOI: 10.1016/j.apsusc.2018.01.122
  55. Song, Z., Zhou, H., Tao, P., Wang, B., Mei, J., Wang, H. (2016). The synthesis of TiO2 nano flowers and their application in electron field emission and self-powered ultraviolet photodetector. Materials Letters, 180, 179–183. DOI: 10.1016/j.matlet.2016.05.178
  56. Ye, M., Liu, H.Y., Lin, C., Lin, Z. (2013). Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small, 9(2), 312–321. DOI: 10.1002/smll.201201590
  57. Faisal, A.Q.D. (2014). Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. Journal of Materials Science: Materials in Electronics, 26(1), 317–321. DOI: 10.1007/s10854-014-2402-4
  58. Issar, S., Mahapatro, A.K. (2019). Hydrothermally grown rutile titanium dioxide nanostructures with various morphologies. Materials Science in Semiconductor Processing, 104, 104676. DOI: 10.1016/j.mssp.2019.104676
  59. Khizir, H.A., Abbas, T.A.H. (2021). Hydrothermal growth and controllable synthesis of flower-shaped TiO2 nanorods on FTO coated glass. Journal of Sol-Gel Science and Technology, 98(3), 487–496. DOI: 10.1007/s10971-021-05531-z
  60. Lu, S., Yang, S., Hu, X., Liang, Z., Guo, Y., Xue, Y., Cui, H., Tian, J. (2019). Fabrication of TiO2 nanoflowers with bronze (TiO2(B))/anatase heterophase junctions for efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 44(45), 24398–24406. DOI: 10.1016/j.ijhydene.2019.07.212
  61. He, Z., Cai, Q., Fang, H., Situ, G., Qiu, J., Song, S., Chen, J. (2013). Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. Journal of Environmental Sciences (China), 25(12), 2460–2468. DOI: 10.1016/S1001-0742(12)60318-0
  62. Ramli, N.F., Fahsyar, P.N.A., Ludin, N.A., Teridi, M.A.M., Ibrahim, M.A., Zaidi, S.H., Sepeai, S. (2019). Compatibility between compact and mesoporous TiO2 layers on the optimization of photocurrent density in photoelectrochemical cells. Surfaces and Interfaces, 17, 100341. DOI: 10.1016/j.surfin.2019.100341
  63. Wategaonkar, Sandeep B., Vinayak G. Parale, Sawanta S. Mali, Chang-Kook Hong, Rani P. Pawar, Parvejha S. Maldar, Annasaheb V. Moholkar, Hyung-Ho Park, Balasaheb M. Sargar, R.K.M. (2021). Influence of Tin Doped TiO2 Nanorods on Dye Sensitized Solar Cells. Materials, 14 (21), 6282. DOI: 10.3390/ma14216282
  64. Ni, S., Guo, F., Wang, D., Jiao, S., Wang, J., Zhang, Y., Wang, B., Feng, P., Zhao, L. (2019). Modification of TiO2 nanowire arrays with sn doping as photoanode for highly efficient dye-sensitized solar cells. Crystals, 9(2) DOI: 10.3390/cryst9020113
  65. Dai, G., Liu, S., Liang, Y., Luo, T. (2013). Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4 /TiO2 nanotube arrays. Applied Surface Science, 264, 157–161. DOI: 10.1016/j.apsusc.2012.09.160
  66. Yu, J., Wang, B. (2010). Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Applied Catalysis B: Environmental, 94(3–4), 295–302. DOI: 10.1016/j.apcatb.2009.12.003
  67. Arifin, K., Yunus, R.M., Minggu, L.J., Kassim, M.B. (2021). Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy, 46(7), 4998–5024. DOI: 10.1016/j.ijhydene.2020.11.063
  68. Jeong, H.W., Haihua, W., Samu, G.F., Rouster, P., Szilágyi, I., Park, H., Janáky, C. (2021). The effect of nanostructure dimensionality on the photoelectrochemical properties of derived TiO2 films. Electrochimica Acta, 373, 137900. DOI: 10.1016/j.electacta.2021.137900
  69. Huang, X., Zhang, R., Gao, X., Yu, B., Gao, Y., Han, Z. gang (2021). TiO2-rutile/anatase homojunction with enhanced charge separation for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 46(52), 26358–26366. DOI: 10.1016/j.ijhydene.2021.05.118
  70. Fang, Y., Hodgson, R., Lee, W.C., Le, H., Chan, H.W.B., Hassan, H.M., Alsohaimi, I.H., Canciani, G.E., Qian, R., Chen, Q. (2023). Light trapping by porous TiO2 hollow hemispheres for high efficiency photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 25(16), 11253–11260. DOI: 10.1039/d2cp04246k
  71. Habibi-Hagh, F., Jafari Foruzin, L., Nasirpouri, F. (2022). Remarkable improvement of photoelectrochemical water splitting in pristine and black anodic TiO2 nanotubes by enhancing microstructural ordering and uniformity. International Journal of Hydrogen Energy, 48(30), 11225–11236. DOI: 10.1016/j.ijhydene.2022.07.158

Last update:

No citation recorded.

Last update:

No citation recorded.