skip to main content

Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation

1Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

2College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia

Received: 17 Jan 2024; Revised: 17 Feb 2024; Accepted: 18 Feb 2024; Available online: 24 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image

Hexagonal TiO2/SiO2 Porous Microplates have been successfully synthesized by incorporation of Ti precursors into SiO2 synthesized from Si precursors in a gelatin-CTAB mixture via the hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, nitrogen adsorption-desorption and Fourier transform infrared spectroscopy (FTIR). The sample has a surface area of 735 m2/g, pore volume of 0.67 cc/g, and pore diameter of 3.2 nm, according to the results of the characterization of hexagonal TiO2/SiO2 porous microplates. The transformation of SiO2 microspheres into hexagonal TiO2/SiO2 porous microplates is revealed by a microparticle size increase of 84% and the transition of Si−O bonds into Ti−O and Si−O as measured by FTIR. The photocatalytic activity of hexagonal TiO2/SiO2 porous microplates resulted in 81.15% photodegradation of methylene blue under UV light irradiation within 60 min, which was 21 % better than SiO2. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (

Keywords: Hexagonal; microplates TiO2/SiO2; methylene blue; photodegradation
Funding: Universitas Sebelas Maret

Article Metrics:

  1. Ramutshatsha-makhwedzha, D., Mavhungu, A., Moropeng, M.L., Mbaya, R. (2023). Heliyon Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, 8, e09930. DOI: 10.1016/j.heliyon.2022.e09930
  2. Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Siengchin, S. (2021). Release of toxic methylene blue from water by mesoporous silicalite-1: characterization, kinetics and isotherm studies. Applied Water Science, 11(7), 1–12. DOI: 10.1007/s13201-021-01435-z
  3. Calzada, L.A., Castellanos, R., García, L.A., Klimova, T.E. (2019). TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous and Mesoporous Materials, 285, 247-258. DOI: 10.1016/j.micromeso.2019.05.015
  4. Tuna, M., Yanalak, G., Arslan, G., Hatay, I. (2020). Materials Science in Semiconductor Processing Green preparation of Carbon Quantum dots using Gingko biloba to sensitize TiO 2 for the photohydrogen production. Materials Science in Semiconductor Processing, 109, 104945. DOI: 10.1016/j.mssp.2020.104945
  5. Lee, S.J., Jung, H.J., Koutavarapu, R., Lee, S.H., Arumugam, M., Kim, J.H., Choi, M.Y. (2019). ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Applied Surface Science, 496, 143665. DOI: 10.1016/j.apsusc.2019.143665
  6. Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., Moshfegh, A.Z. (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 605, 2–19. DOI: 10.1016/j.tsf.2015.12.064
  7. Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., Pradipta, M.F., Jalil, A.A. (2023). Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean Journal of Chemical Engineering, 40 (1), 112–123. DOI: 10.1007/s11814-022-1224-y
  8. Li, J., Han, L., Zhang, T., Qu, C., Yu, T., Yang, B. (2022). Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences (Switzerland), 12(9), 4725. DOI: 10.3390/app12094725
  9. Sapkota, K.P., Islam, M.A., Hanif, M.A., Akter, J., Lee, I., Hahn, J.R. (2021). Hierarchical nanocauliflower chemical assembly composed of copper oxide and single‐walled carbon nanotubes for enhanced photocatalytic dye degradation. Nanomaterials, 11 (3), 696. DOI: 10.3390/nano11030696
  10. Shin, J., Andreas Hutomo, C., Kim, J., Jang, J., Beum Park, C. (2022). Natural pollen exine-templated synthesis of photocatalytic metal oxides with high surface area and oxygen vacancies. Applied Surface Science, 599, 154064. DOI: 10.1016/j.apsusc.2022.154064
  11. Cheng, Z., Luo, S., Liu, Z., Zhang, Y., Liao, Y., Guo, M., Nguyen, T.T. (2022). Visible-light-driven hierarchical porous CeO2 derived from wood for effective photocatalytic degradation of methylene blue. Optical Materials, 129, 112429. DOI: 10.1016/j.optmat.2022.112429
  12. Ulfa, M., Al Afif, H., Saraswati, T.E., Bahruji, H. (2022). Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials, 15(16), 5471. DOI: 10.3390/ma15165471
  13. Ulfa, M., Prasetyoko, D., Trisunaryanti, W., Bahruji, H., Fadila, Z.A., Sholeha, N.A. (2022). The effect of gelatin as pore expander in green synthesis mesoporous silica for methylene blue adsorption. Scientific Reports, 12(1), 1–12. DOI: 10.1038/s41598-022-19615-5
  14. Anjum, M., Kumar, R., Abdelbasir, S.M., Barakat, M.A. (2018). Carbon nitride/titania nanotubes composite for photocatalytic degradation of organics in water and sludge: Pre-treatment of sludge, anaerobic digestion and biogas production. Journal of Environmental Management, 223, 495–502. DOI: 10.1016/j.jenvman.2018.06.043
  15. Wang, Y., Lu, Y., Luo, R., Zhang, Y., Guo, Y., Yu, Q. (2018). Densely-stacked N-doped mesoporous TiO2/carbon microsphere derived from outdated milk as high-performance electrode material for energy storages. Ceramics International, 44(14), 16265–16272. DOI: 10.1016/j.ceramint.2018.06.020
  16. Naseem, S., Khan, W., Khan, S., Uddin, I., Raza, W., Shoeb, M., Mobin, M., Naqvi, A.H. (2019). Enhanced Photocatalytic Activity by Tuning of Structural and Optoelectrical Properties of Cr(III) Incorporated TiO2 Nanoparticles. Journal of Electronic Materials, 48, 7203–7215. DOI: 10.1007/s11664-019-07499-7
  17. Zheng, X., Zhang, X., Hu, Q., Sun, H., Wang, L., Li, X. (2021). Adsorption and photocatalytic activity of nano-magnetic materials fe3o4@c@tio2-agbr-ag for rhodamine b. Current Nanoscience, 17 (3), 484–493. DOI: 10.2174/1573413716999200820144001
  18. Marfur, N.A., Jaafar, N.F., Khairuddean, M., Nordin, N. (2020). A Review on Recent Progression of Modifications on Titania Morphology and its Photocatalytic Performance. Acta Chimica Slovenica, 67(2), 361–374. DOI: 10.17344/acsi.2019.5161
  19. Herath, A., Navarathna, C., Warren, S., Perez, F., Pittman, C.U., Mlsna, T.E. (2022). Iron/titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. Journal of Colloid and Interface Science, 614, 603–616. DOI: 10.1016/j.jcis.2022.01.067
  20. Jin, X., Che, R., Yang, J., Liu, Y., Chen, X., Jiang, Y., Liang, J., Chen, S., Su, H. (2022). Activated Carbon and Carbon Quantum Dots/Titanium Dioxide Composite Based on Waste Rice Noodles: Simultaneous Synthesis and Application in Water Pollution Control. Nanomaterials, 12(3), 472. DOI: 10.3390/nano12030472
  21. Brossault, D.F.F., McCoy, T.M., Routh, A.F. (2021). Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts. Journal of Colloid and Interface Science, 584, 779–788. DOI: 10.1016/j.jcis.2020.10.001
  22. Wei, J., Wen, X., Zhu, F. (2018). Influence of Surfactant on the Morphology and Photocatalytic Activity of Anatase TiO2 by Solvothermal Synthesis. Journal of Nanomaterials, 2018, 3086269. DOI: 10.1155/2018/3086269
  23. Sanad, M.M.S., Farahat, M.M., El-Hout, S.I., El-Sheikh, S.M. (2021). Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. Journal of Environmental Chemical Engineering, 9(2), 105127. DOI: 10.1016/j.jece.2021.105127
  24. Coradin, T., Bah, S., Livage, J. (2004). Gelatine/silicate interactions: From nanoparticles to composite gels. Colloids and Surfaces B: Biointerfaces, 35 (1), 53–58. DOI: 10.1016/j.colsurfb.2004.02.008
  25. El-Hakam, S.A., ALShorifi, F.T., Salama, R.S., Gamal, S., El-Yazeed, W.S.A., Ibrahim, A.A., Ahmed, A.I. (2022). Application of nanostructured mesoporous silica/ bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. Journal of Materials Research and Technology, 18, 1963–1976. DOI: 10.1016/j.jmrt.2022.03.067
  26. Ulfa, M., Nur, C., Amalia, N. (2023). Fine-tuning mesoporous silica properties by a dual-template ratio as TiO2 support for dye photodegradation booster. Heliyon, 9(6), e16275. DOI: 10.1016/j.heliyon.2023.e16275
  27. Khairy, M., Zakaria, W. (2014). Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyptian Journal of Petroleum, 23(4), 419–426. DOI: 10.1016/j.ejpe.2014.09.010
  28. Fujimoto, K., Watanabe, K., Ishikawa, S., Ishii, H., Suga, K. (2021). Pore expanding effect of hydrophobic agent on 100 nm-sized mesoporous silica particles estimated based on Hansen solubility parameters. Colloids and Surfaces A, 609, 125647. DOI: 10.1016/j.colsurfa.2020.125647
  29. Chanhom, P., Charoenlap, N., Tomapatanaget, B., Insin, N. (2017). Colloidal titania-silica-iron oxide nanocomposites and the effect from silica thickness on the photocatalytic and bactericidal activities. Journal of Magnetism and Magnetic Materials, 427, 54–59. DOI: 10.1016/j.jmmm.2016.10.123
  30. Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., Muraza, O. (2019). Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon, 5 (11), e02766. DOI: 10.1016/j.heliyon.2019.e02766
  31. Nguyen, Q.N.K., Yen, N.T., Hau, N.D., Tran, H.L. (2020). Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards. Journal of Chemistry, 2020, 8456194. DOI: 10.1155/2020/8456194
  32. Kibona, T.E. (2020). Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes. Journal of Solid State Electrochemistry, 24(7), 1587–1598. DOI: 10.1007/s10008-020-04673-4
  33. Abdolahi Sadatlu, M.A., Mozaffari, N. (2016). Synthesis of mesoporous TiO2 structures through P123 copolymer as the structural directing agent and assessment of their performance in dye-sensitized solar cells. Solar Energy, 24–34. DOI: 10.1016/j.solener.2016.03.056
  34. de Souza, C.C., de Souza, L.Z.M., Yılmaz, M., de Oliveira, M.A., da Silva Bezerra, A.C., da Silva, E.F., Dumont, M.R., Machado, A.R.T. (2022). Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling. Cleaner Materials, 3, 100052. DOI: 10.1016/j.clema.2022.100052
  35. Sharma, R.K., Wang, S., Maity, J.P., Banerjee, P., Dey, G., Huang, Y., Bundschuh, J., Hsiao, P., Chen, T., Chen, C. (2021). A novel BMSN (biologically synthesized mesoporous silica nanoparticles) material: synthesis using a bacteria-mediated biosurfactant and characterization. RSC Advances, 11, 32906. DOI: 10.1039/d1ra05852e
  36. Usgodaarachchi, L., Thambiliyagodage, C., Wijesekera, R., Bakker, M.G. (2021). Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Current Research in Green and Sustainable Chemistry, 4, 100116. DOI: 10.1016/j.crgsc.2021.100116
  37. Bet-Moushoul, E., Mansourpanah, Y., Farhadi, K., Tabatabaei, M. (2016). TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal, 283, 29–46. DOI: 10.1016/j.cej.2015.06.124
  38. Fatimah, I., Iman, N., Sahroni, I., Musawwa, M.M. (2019). Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon, 5, e02766. DOI: 10.1016/j.heliyon.2019.e02766
  39. Lin, T.H., Thang, T.Q., An, H., Hai, N.D. (2023). Synthesis of TiO2-doped carbon aerogel from sugarcane bagasse for high efficiency of photodegradation of methylene blue in the water. Vietnam Journal Chemistry, 61(2), 227–237. DOI: 10.1002/vjch.202200128
  40. Li, W., Liang, R., Zhou, N.Y., Pan, Z. (2020). Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega, 5, 10042−10051. DOI: 10.1021/acsomega.0c00504
  41. Nouren, S., Bibi, I., Kausar, A., Sultan, M., Nawaz, H., Safa, Y., Sadaf, S., Alwadai, N., Iqbal, M. (2024). Green synthesis of CuO nanoparticles using Jasmin sambac extract: Conditions optimization and photocatalytic degradation of Methylene Blue dye. Journal of King Saud University - Science, 36, 103089. DOI: 10.1016/j.jksus.2024.103089
  42. Bello, M.O., Prabhakar, S., Abdus-salam, N., Adekola, F.A., Shobha, C., Sesha, A. V, Pal, U. (2024). Na-Y zeolite supported TiO2/Pd nanoparticles for enhanced photoredox catalytic properties and green hydrogen generation. Catalysis Communications, 186, 106817. DOI: 10.1016/j.catcom.2023.106817
  43. Awan, A.M., Khalid, A., Ahmad, P., Alharthi, A.I., Farooq, M., Khan, A., Khandaker, M.U., Aldawood, S., Alotaibi, M.A., El-Mansi, A.A., Eldesoqui, M.B., Dawood, A.F., Zyoud, S.H. (2024). Defects oriented hydrothermal synthesis of TiO2 and MnTiO2 nanoparticles as photocatalysts for wastewater treatment and antibacterial applications. Heliyon, 10, e25579. DOI: 10.1016/j.heliyon.2024.e25579
  44. Rianjanu, A., Deny, K., Marpaung, P., Kartini, E., Melati, A., Rizky, A., Gusti, Y., Mahendra, I.P., Yulianto, N., Widakdo, J., Triyana, K., Suryo, H., Taher, T. (2023). Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb2O5@PAN/PVDF/ANO composite nano fibers. Nano Materials Science, in press. DOI: 10.1016/j.nanoms.2023.10.006
  45. Septiningrum, F., Herman, A., Akbar, F. (2024). Mangosteen pericarp extract mediated synthesis of Ag/TiO2 nanocomposite and its application on organic pollutant degradation by adsorption-photocatalytic activity. Current Research in Green and Sustainable Chemistry, 8, 100394. DOI: 10.1016/j.crgsc.2023.100394
  46. Gomes, B.R., Lopes, J.L., Coelho, L., Ligonzo, M., Rigoletto, M., Magnacca, G., Deganello, F. (2023). Development and Upscaling of SiO2@TiO2 Core-Shell Nanoparticles for Methylene Blue Removal. Nanomaterials, 13(16), 2276. DOI: 10.3390/nano13162276

Last update:

No citation recorded.

Last update:

No citation recorded.