skip to main content

Lampung Natural Zeolite Dopped with of ZnO-TiO2 Metal Oxide as Catalyst for Biodiesel Production

1Research Center for Chemistry, National Research and Innovation Agency (BRIN-Indonesia), South Tangerang 15314, Indonesia

2Department of Chemical Engineering, University of Sonan Bonang, East Java 62311, Indonesia

3Department of Mechanical Engineering, State University of Jakarta, East Jakarta 13220, Indonesia

4 Department of Chemistry, University of Lampung, Bandar Lampung 3514, Indonesia

5 Department of Chemical Engineering, Kalimantan Institute of Technology, East Kalimantan 76127, Indonesia

6 Department of Chemistry, University of Semarang, Central Java 50229, Indonesia

7 Research Center for Mining Technology, National Research and Innovation Agency (BRIN-Indonesia), South Lampung 35361, Indonesia

View all affiliations
Received: 12 Sep 2023; Revised: 9 Jan 2024; Accepted: 9 Jan 2024; Available online: 11 Jan 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Research has been carried out on making biodiesel from palm oil using natural zeolite catalysts impregnated with metal oxides such as zinc oxide and titanium oxide. This research aims to produce biodiesel using natural zeolite and ZnO-TiO2/NZ catalysts. The catalysts were analyzed using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscope (SEM), and Brunauer-Emmet-Teller (BET). The catalyst was tested in the transesterification reaction to produce biodiesel. The mole oil and methanol ratio varied from 1:15, 1:18, and 1:20. In addition, the biodiesel product was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The results showed the optimum condition for converting triglycerides to 1:18 variation of oil:methanol was 60.53%using a ZnO-TiO2/NZ catalyst. The ZnO-TiO2/NZ catalyst is very promising for use as a catalyst for converting palm oils into biodiesel.

Keywords: Natural zeolite; ZnO-TiO2/NZ catalyst; transesterification reaction; biodiesel
Funding: BRIN-LPDP (Riset dan Inovasi untuk Indonesia Maju, RIIM Batch 3) under contract 12.II.7/HK/2023; Kemenristek / BRIN - Indonesia) under contract 46/E1/KPT/2020 and No. 12/INS/PPK/E4/2020

Article Metrics:

  1. Pandiangan, K.D., Simanjuntak, W. (2013). Transesterification of Coconut Oil Using Dimethyl Carbonate and TiO2/SiO2 Heterogeneous Catalyst. Indonesian Journal of Chemistry, 13(1), 47-52. DOI: 10.22146/ijc.21325
  2. Vicente, G., Martı́nez, M., Aracil, J., Esteban, A. (2005). Kinetics of Sunflower Oil Methanolysis. Industrial & Engineering Chemistry Research, 44(15), 5447–54. DOI: 10.1021/ie040208j
  3. McNeff, C.V., McNeff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Krohn, B.J., Fedie, R.L., Hoye, T.R. (2008). A Continuous Catalytic System for Biodiesel Production. Applied Catalysis A: General, 343(1-2), 39–48. DOI: 10.1016/j.apcata.2008.03.019
  4. Jyoti, G., Khesav, A., Anandkumar, J., Bhoi, S. (2017). Homogeneous and Heterogeneous Catalyzed Esterification of Acrylic Acid with Ethanol: Reaction Kinetics and Modeling. International Journal of Chemical Kinetics, 50(5), 371-380. DOI: 10.1002/kin.21167
  5. Ogunkunle, O., Oniya, O.O., Adebayo, A.O. (2017). Yield Response of Biodiesel Production from Heterogeneous and Homogeneous Catalysis of Milk Bush Seed (Thevetia peruviana) Oil. Energy and Policy Research, 4(1), 21–28. DOI: 10.1080/23815639.2017.1319772
  6. Hiwot, T. (2018). Mango (Magnifera indica) seed oil grown in Dilla town as potential raw material for biodiesel production using NaOH-a homogeneous catalyst. Chemistry International. 4(4), 198-205
  7. Kadarwati, S., Annisa, R.N., Apriliani, E. (2022). Zeolit Alam Indonesia Sebagai Kandidat Katalis Asam Padat yang Unggul untuk Proses Upgrading Bio-Oil Melalui Teknik Esterifikasi. Inovasi Kimia, 1, 88-118. DOI: 10.15294/ik.v1i1.63
  8. Justine, M., Joy Prabu, H., Johnson, I., Magimai Antoni Raj, D., John Sundaram, S., Kaviyarasu, K. (2021). Synthesis and Characterizations Studies of ZnO and ZnO-SiO2 Nanocomposite for Biodiesel Applications. Materials Today: Proceedings, 36, 440–46. DOI: 10.1016/j.matpr.2020.05.034
  9. Asri, N.P., Soe’eib, S., Poedjojono, B., Suprapto. (2017). Alumina Supported Zinc Oxide Catalyst for Production of Biodiesel from Kesambi Oil and Optimization to Achieve Highest Yields of Biodiesel. Euro-Mediterranean Journal for Environmental Integration, 3(1), 3. DOI: 10.1007/s41207-017-0043-8
  10. Liu, X., Piao, X., Wang, Y., Zhu, S., He, H. (2008). Calcium Methoxide as a Solid Base Catalyst for the Transesterification of Soybean Oil to Biodiesel with Methanol. Fuel, 87(7), 1076–1082. DOI: 10.1016/j.fuel.2007.05.059
  11. Wong, Y.C., Tan, Y.P., Taufiq-Yap, Y.H., Ramli, I. (2015). An Optimization Study for Transesterification of Palm Oil Using Response Surface Methodology (RSM). Sains Malaysiana, 44(2), 81–90. DOI: 10.17576/jsm-2015-4402-17
  12. Zhu, L., Cheung, C.S., Huang, Z. (2016). A Comparison of Particulate Emission for Rapeseed Oil Methyl Ester, Palm Oil Methyl Ester and Soybean Oil Methyl Ester in Perspective of Their Fatty Ester Composition. Applied Thermal Engineering, 94, 249-255. DOI: 10.1016/j.applthermaleng.2015.10.132
  13. Shi, T., Zhu, M., Zhou, X., Xi, H., Long, Y., Zeng, X., Chen, Y. (2019). 1H NMR Combined with PLS for the Rapid Determination of Squalene and Sterols in Vegetable Oils. Food Chemistry, 287, 46-54. DOI: 10.1016/j.foodchem.2019.02.072
  14. Teo, S.H., Rashid, U., Taufiq‐Yap, Y.H. (2014). Heterogeneous Catalysis of Transesterification of Jatropha curcas Oil Over Calcium–Cerium Bimetallic Oxide Catalyst. RSC Advances, 4(90), 48836-48847. DOI: 10.1039/c4ra08471c
  15. Muttaqii, M.A., Amin, M., Prasetyo, E., Alviany, R., Marlinda, L. (2021). Production of Biodiesel over ZnO-TiO2 Bifunctional Oxide Catalyst Supported on Natural Zeolite. IOP Conference Series: Earth and Environmental Science, 926(1), 012083. DOI: 10.1088/1755-1315/926/1/012083
  16. Muttaqiii, M.A., Birawidha, D.C., Isnugroho, K., Amin, M., Hendronursito, Y., Istiqomah, A.D., Dewangga, D.P.J. (2019). Pengaruh Aktivasi secara Kimia menggunakan Larutan Asam dan Basa terhadap Karakteristik Zeolit Alam. Jurnal Riset Teknologi Industri, 13, 266-271. DOI: 10.26578/jrti.v13i2.5577
  17. Abatal, M., Córdova Quiroz, A.V., Olguı́n, M.T., Vázquez-Olmos, A.R., Vargas, J., Anguebes-Franseschi, F., Giácoman-Vallejos, G. (2019). Sorption of Pb(II) from Aqueous Solutions by Acid-Modified Clinoptilolite-Rich Tuffs with Different Si/Al Ratios. Applied Sciences, 9(12), 2415. DOI: 10.3390/app9122415
  18. Li, W., Liang, R., Hu, A., Huang, Z., Zhou, Y.N. (2014). Generation of Oxygen Vacancies in Visible Light Activated One-Dimensional Iodine TiO2 Photocatalysts. RSC Adv. 4 (70), 36959–66. DOI: 10.1039/c4ra04768k
  19. Basnet, P., Samanta, D., Inakhunbi Chanu, T., Mukherjee, J., Chatterjee, S. (2019). Assessment of Synthesis Approaches for Tuning the Photocatalytic Property of ZnO Nanoparticles. SN Applied Sciences, 1, 6. DOI: 10.1007/s42452-019-0642-x
  20. Zulaicha, S., Suwardiyanto, S., Andarini, N. (2020). Sintesis Kalsium Aluminat (CaAl2O4) Dengan Variasi Asam Sitrat Dan Suhu Kalsinasi Menggunakan Metode Sol-Gel Sebagai Katalis Biodiesel. Berkala Sainstek, 8(2), 41. DOI: 10.19184/bst.v8i2.15066
  21. Anwaristiawan, D., Harjito, Widiarti, N. (2018). Modifikasi Katalis BaO/Zeolit Y pada Reaksi Transesterifikasi Minyak Biji Jarak (Jatropha Curcas L.) menjadi Biodiesel. Indonesian Journal of Chemical Science, 7(3), 292–298
  22. Tadeus, A., Silalahi, I.H., Sayekti, E., Aladin, S. (2013). Karakterisasi Katalis Zeolit-Ni Regenerasi dan Tanpa Regenerasi dalam Reaksi Perengkahan Katalitik. Jurnal Kimia Khatulistiwa, 14 (3), 234-241
  23. Husein, S., Wahyuni, E.T., Mudasir, M. (2019). Synthesis of Tin(II) Oxide (SnO) Nanoparticle by Hydrothermal Method. Jurnal Kimia Dan Pendidikan Kimia, 4(3), 145. DOI: 10.20961/jkpk.v4i3.29898
  24. Zilfa., Safni., Rahmi, F. (2021). Penggunaan ZnO/Zeolit Sebagai Katalis Dalam Degradasi Tartrazin Secara Ozonolisis. Jurnal Riset Kimia. 12 (1), 53–64. DOI: 10.25077/jrk.v12i1.387
  25. Prajitno, D.H., Marlinda, L., Muttaqii, M.A., Gunardi, I., Roesyadi, A. (2017). Hydrocracking of Cerbera Manghas Oil with Co-Ni/HZSM-5 as Double Promoted Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 167. DOI: 10.9767/bcrec.12.2.496.167-184
  26. Muttaqii, M.A., Kurniawansyah, F., Prajitno, D. H., Roesyadi, A. (2019). Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over Ni-Fe/HZSM-5 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (2), 309-319. DOI: 10.9767/bcrec.14.2.2669.309-319
  27. Redjeki, A.S., Fithriyah, N.H., Sari, A.M. (2014). Pengaruh Kadar Ni terhadap Sifat Permukaan Katalis Ni Berbahan Baku Limbah Elektroplating. Prosiding Seminar Nasional dan Teknologi, 1–5
  28. Marlinda, L., Prajitno, D.H., Roesyadi, A., Gunardi, I., Mirzayanti, Y.M., Muttaqii, M.A., Budianto, A. (2022). Biofuel from Hydrocracking of Cerbera Manghas Oil over Ni-Zn/HZSM-5 Catalyst. Ecletica Quimica Journal, 47(1), 17–39. DOI: 10.26850/1678-4618eqj.v47.1.2022.p17-39
  29. Muttaqii, M.A., Kurniawansyah, F., Prajitno, D. H., Roesyadi, A. (2019). Hydrocracking of Coconut Oil over Ni-Fe/HZSM-5 Catalyst to Produce Hydrocarbon Biofuel. Indonesian Journal of Chemistry, 19(2), 319. DOI: 10.22146/ijc.33590
  30. Purba, S.E., Wijaya, K., Trisunaryanti, W., Pratika, R.A. (2021). Dealuminated and Desilicated Natural Zeolite as a Catalyst for Hydrocracking of Used Cooking Oil into Biogasoline. Mediterranean Journal of Chemistry, 11(1), 75. DOI: 10.13171/mjc02101141493kw
  31. Dashtpeyma, G., Shabanian, S.R., Ahmadpour, J., Nikzad, M. (2022). The Investigation of Adsorption Desulphurization Performance Using Bimetallic Cu-Ce and Ni-Ce Mesoporous y Zeolites: Modification of y Zeolite by H4EDTA-NaOH Sequential Treatment. Fuel Processing Technology, 235, 107379. DOI: 10.1016/j.fuproc.2022.107379
  32. Fawaz, E.G., Salam, D.A., Rigolet, S.S., Daou, T.J. (2021). Hierarchical Zeolites as Catalysts for Biodiesel Production from Waste Frying Oils to Overcome Mass Transfer Limitations. Molecules. 26(16), 4879. DOI: 10.3390/molecules26164879
  33. Wu, H., Zhang, J., Wei, Q., Zheng, J., Zhang, J. (2013). Transesterification of Soybean Oil to Biodiesel Using Zeolite Supported CaO as Strong Base Catalysts. Fuel Processing Technology, 109, 13–18. DOI: 10.1016/j.fuproc.2012.09.032
  34. Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G. (2007). Synthesis of Biodiesel from Soybean Oil and Methanol Catalyzed by Zeolite Beta Modified with La3. Catalysis Communications, 8(12), 2159–65. DOI: 10.1016/j.catcom.2007.04.028
  35. Khatibi, M., Khorasheh, F., Larimi, A. (2020). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163, 1626-1636. DOI: 10.1016/j.renene.2020.10.039
  36. Mansir, N., Teo, S.H., Rashid, U., Taufiq-Yap, Y.H. (2018). Efficient waste Gallus domesticus shell derived calcium-based catalyst for biodiesel production. Fuel, 211, 67–75. DOI: 10.1016/j.fuel.2017.09.014
  37. Gardy, J., Rehan, M., Hassanpour, A., Lai, X., Nizami, A.-S. (2019). Advances in nano-catalysts based biodiesel production from non-food feedstocks. Journal of Environmental Management, 249, 109316. DOI: 10.1016/j.jenvman.2019.109316
  38. Mierczynski, P., Mosinska, M., Szkudlarek, L., Chalupka, K., Tatsuzawa, M., Al Maskari, M., Maniukiewicz, W., Wahono, S.K., Vasilev, K., Szynkowska-Jozwik, M.I. (2021). Biodiesel Production on Monometallic Pt, Pd, Ru, and Ag Catalysts Supported on Natural Zeolite. Materials, 14, 48. DOI: 10.3390/ma14010048

Last update:

No citation recorded.

Last update:

No citation recorded.