skip to main content

NO Dissociation on Platinum and Platinum-Rhodium Alloy: A Theoretical Investigation

1Department of Chemical and Environmental Engineering, International University, Ho Chi Minh City, Viet Nam

2Vietnam National University, Ho Chi Minh City, Viet Nam

Received: 7 Nov 2023; Revised: 22 Dec 2023; Accepted: 23 Dec 2023; Available online: 25 Dec 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this computational study, the preferential adsorption and co-adsorption sites of various chemical species (N, O, and NO) on the Pt (111) and Rh3Pt (111) surfaces were identified. The preferential adsorption site for NO and co-adsorption sites for N and O on the Pt (111) surface are the hollow (fcc) sites; and these on the Rh3Pt (111) surface are the hollow (fcc1) site and hollow N(hcp2)-O(fcc1) sites, respectively. The activation energies of the NO dissociation reaction on the Pt (111) and Rh3Pt (111) catalytic surfaces are 2.35 and 2.02 eV, respectively. The lower activation energy of the NO decomposition on the Rh3Pt (111) surface is explained by the stronger back-donation from the 4d orbital of the Rh atoms to the 2π* anti-bonding orbital of the NO molecule. The activation energies of the N and O recombination reaction on the Pt (111) and Rh3Pt (111) catalytic surfaces are 1.51 and 2.30 eV, respectively. The study indicates that the Rh3Pt (111) surface not only facilitates the NO decomposition but also better prevents N and O from recombination. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: NO dissociation; Quantum ESPRESSO; Plantium; Rhodium; Catalysis
Funding: Vietnam National University HoChiMinh City (VNU-HCM) under contract C2022-28-09.

Article Metrics:

  1. Han, L., Cai, S., Gao, M., Hasegawa, J.-y., Wang, P., Zhang, J., Shi, L., Zhang, D. (2019) Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews. 119 (19), 10916-10976. DOI: 10.1021/acs.chemrev.9b00202
  2. Wang, Z., Kuang, H., Zhang, J., Chu, L., Ji, Y.. (2019) Nitrogen oxide removal by non-thermal plasma for marine diesel engines. RSC Advances. 9 (10), 5402-16. DOI: 10.1039/C8RA09217F
  3. Rajanikanth, B.S., Mohapatro, S., Umanand, L. (2009) Solar powered high voltage energization for vehicular exhaust cleaning: A step towards possible retrofitting in vehicles. Fuel Processing Technology. 90 (3), 343-52. DOI: 10.1016/j.fuproc.2008.10.004
  4. Suchak, N.J., Jethani, K., Joshi, J.B. (1990) Absorption of nitrogen oxides in alkaline solutions: selective manufacture of sodium nitrite. Industrial & Engineering Chemistry Research. 29 (7), 1492-502. DOI: 10.1021/ie00103a059
  5. Yang, J.-R., Wang, Y., Chen, H., Ren, R.-P., Lv, Y.-K. (2021) A new approach for the effective removal of NOx from flue gas by using an integrated system of oxidation−absorption−biological reduction. Journal of Hazardous Materials. 404, 124109. DOI: 10.1016/j.jhazmat.2020.124109
  6. Thomas, D., Vanderschuren, J. (2000) Nitrogen Oxides Scrubbing with Alkaline Solutions. Chemical Engineering & Technology. 23 (5), 449-455. DOI: 10.1002/(SICI)1521-4125(200005)23:5<449::AID-CEAT449>3.0.CO;2-L
  7. Yu, C., Yi, Y., Zhou, J., Xu, W. (2023) Highly effective and energy-saving removal of NO through an adsorption–microwave catalytic decomposition method under complex flue gas at low temperature. Inorganic Chemistry Frontiers. 10 (13), 3808-3820. DOI: 10.1039/D3QI00126A
  8. Wang, X., Yang, X., Qiao, X., Guo, J., Guo, J., Jin, Y., Fan, B. (2020) Effect of Water Vapor on Catalytic Decomposition of NO over Cu–ZSM-5: A Mechanism and Kinetic Study. Energy & Fuels. 34 (9), 11341-11352. DOI: 10.1021/acs.energyfuels.0c01866
  9. Cubides, D., Guimerà, X., Jubany, I., Gamisans, X. (2023) A review: Biological technologies for nitrogen monoxide abatement. Chemosphere. 311, 137147. DOI: 10.1016/j.chemosphere.2022.137147
  10. Páez, D.F.C., Villalba, X.G., Zabalo, N.A., Galceran, H.T., Güell, I.J., Noguera, X.G. (2023) Mass transfer vectors for nitric oxide removal through biological treatments. Environmental Science and Pollution Research. 30 (51), 110089-1100103. DOI: 10.1007/s11356-023-30009-6
  11. Lim, T., La, Y., Jeon, O.S., Park, S.Y., Yoo, Y.J., Yang, K.-H. (2020) Pore Structure Analysis to Adsorb NOx Gas based on Porous Materials. Journal of the Korean Physical Society. 77 (9), 790-796. DOI: 10.3938/jkps.77.790
  12. Wakabayashi, R., Tomita, A., Kimura, T. (2020) Understanding of NOx storage property of impregnated Ba species after crystallization of mesoporous alumina powders. Journal of Hazardous Materials. 398, 122791. DOI: 10.1016/j.jhazmat.2020.122791
  13. Xiao, B., Wheatley, P.S., Zhao, X., Fletcher, A.J., Fox, S., Rossi, A.G., Megson, I.L., Bordiga, S., Regli, L., Thomas, K.M., Morris, R.E. (2007) High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal−Organic Framework. Journal of the American Chemical Society. 129 (5), 1203-1209. DOI: 10.1021/ja066098k
  14. Amirnazmi, A., Boudart, M. (1975). Decomposition of nitric oxide on platinum. Journal of Catalysis. 39 (3), 383-394. DOI: 10.1016/0021-9517(75)90305-X
  15. Granger, P., Wu, J., Ba, H., Baaziz, W., Ersen, O., Zafeiratos, S., Nhut, J.-M., Giambastiani, G., Pham-Huu, C. (2021) Cooperative effect of Pt single-atoms and nanoparticles supported on carbonaceous materials: Catalytic NO decomposition as a probe reaction. Applied Catalysis A: General. 617, 118103. DOI: 10.1016/j.apcata.2021.118103
  16. Bakker, J.M., Mafuné, F. (2022) Zooming in on the initial steps of catalytic NO reduction using metal clusters. Physical Chemistry Chemical Physics. 24 (13), 7595-7610. DOI: 10.1039/D1CP05760J
  17. Inderwildi, O.R., Jenkins, S.J., King, D.A. (2007) When adding an unreactive metal enhances catalytic activity: NOx decomposition over silver–rhodium bimetallic surfaces. Surface Science. 601 (17), L103-L108. DOI: 10.1016/j.susc.2007.06.031
  18. Reddy, G.K., Ling, C., Peck, T.C., Jia, H. (2017) Understanding the chemical state of palladium during the direct NO decomposition – influence of pretreatment environment and reaction temperature. RSC Advances. 7 (32), 19645-19655. DOI: 10.1039/C7RA00836H
  19. Toso, A., Danielis, M., de Leitenburg, C., Boaro, M., Trovarelli, A., Colussi, S. (2022) Key Properties and Parameters of Pd/CeO2 Passive NOx Adsorbers. Industrial & Engineering Chemistry Research. 61 (9), 3329-3341. DOI: 10.1021/acs.iecr.1c04805
  20. Fang, S., Takagaki, A., Watanabe, M., Ishihara, T. (2020) The direct decomposition of NO into N2 and O2 over copper doped Ba3Y4O9. Catalysis Science & Technology. 10 (8), 2513-2522. DOI: 10.1039/D0CY00194E
  21. Liu, Y., Chen, L., Liu, S., Yang, S., Shangguan, J. (2023) Role of iron-based catalysts in reducing NOx emissions from coal combustion. Chinese Journal of Chemical Engineering. 59, 1-8. DOI: 10.1016/j.cjche.2022.11.017
  22. Williamson, W.B., Stepien, H.K., Gandhi, H.S. (1980) Poisoning of platinum-rhodium automotive three-way catalysts: behavior of single-component catalysts and effects of sulfur and phosphorus. Environmental Science & Technology. 14 (3), 319-324. DOI: 10.1021/es60163a008
  23. Matsumoto, Y., Onishi, T., Tamaru, K. (1980) Effects of sulphur on a palladium surface on the adsorption of carbon monoxide and the adsorption and decomposition of nitric oxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 76 (0), 1116-1121. DOI: 10.1039/F19807601116
  24. Spassova, I., Khristova, M., Nyagolova, N., Mehandjiev, D. (2000) Decomposition of NO over copper-manganese oxide catalysts at room temperature. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (editors). Studies in Surface Science and Catalysis. 130: Elsevier; 2000. p. 1313-8. DOI: 10.1016/S0167-2991(00)80381-X
  25. Zhao, P., Ehara, M. (2023) Theoretical insights into the support effect on the NO activation over platinum-group metal catalysts. The Journal of Chemical Physics. 158 (13). DOI: 10.1063/5.0145586
  26. Burch, R., Breen, J.P., Meunier, F.C. (2002) A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental. 39 (4), 283-303. DOI: 10.1016/S0926-3373(02)00118-2
  27. Castoldi, L., Matarrese, R., Kubiak, L., Daturi, M., Artioli, N., Pompa, S., Lietti, L. (2019) In-depth insights into N2O formation over Rh- and Pt-based LNT catalysts. Catalysis Today. 320, 141-151. DOI: 10.1016/j.cattod.2018.01.026
  28. Cho, B.K. (1994) Mechanistic Importance of Intermediate N2O + CO Reaction in Overall NO + CO Reaction System: II. Further Analysis and Experimental Observations. Journal of Catalysis. 148 (2), 697-708. DOI: 10.1006/jcat.1994.1256
  29. Cho, B.K. (1992) Mechanistic importance of intermediate N2O + CO reaction in overall NO + CO reaction system: I. Kinetic analysis. Journal of Catalysis. 138 (1),255-266. DOI: 10.1016/0021-9517(92)90021-9
  30. Liu, Z.-P., Jenkins, S.J., King, D.A. (2003) Step-Enhanced Selectivity of NO Reduction on Platinum-Group Metals. Journal of the American Chemical Society. 125 (48), 14660-14661. DOI: 10.1021/ja0372208
  31. Bai, Y., Mavrikakis. M. (2018) Mechanistic Study of Nitric Oxide Reduction by Hydrogen on Pt(100) (I): A DFT Analysis of the Reaction Network. The Journal of Physical Chemistry B. 122 (2), 432-443. DOI: 10.1021/acs.jpcb.7b01115
  32. Gonzalez, J.D., Shojaee, K., Haynes, B.S., Montoya, A. (2018) The effect of surface coverage on N2, NO and N2O formation over Pt(111). Physical Chemistry Chemical Physics. 20 (39), 25314-25323. DOI: 10.1039/C8CP04066D
  33. Farberow, C.A., Dumesic, J.A., Mavrikakism, M. (2014) Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111). ACS Catalysis. 4 (10), 3307-3319. DOI: 10.1021/cs500668k
  34. Ungerer, M.J., Santos-Carballal, D., Cadi-Essadek, A., van Sittert, C.G.C.E., de Leeuw, N.H. (2019) Interaction of H2O with the Platinum Pt (001), (011), and (111) Surfaces: A Density Functional Theory Study with Long-Range Dispersion Corrections. The Journal of Physical Chemistry C. 123 (45), 27465-27476. DOI: 10.1021/acs.jpcc.9b06136
  35. Chen, J.-J., Wang, S.-D., Li, Z.-Y., Li, X.-N., He, S.-G. (2023) Selective Reduction of NO into N2 Catalyzed by Rh1-Doped Cluster Anions RhCe2O3–5–. Journal of the American Chemical Society. 2023. DOI: 10.1021/jacs.3c06565
  36. Tiri, R.N.E., Aygün, A., Gülbay, S.K., Sen, F., Cheng, C.K., Jafarzadeh, H., Abouei Mehrizi, A., Vasseghian, Y. (2022) Improving hydrogen generation from dehydrogenation of dimethylamine borane using polyvinylpyrrolidone stabilized platinum-rhodium nanoclusters as highly efficient and reusable catalysts: Development of ANN model. Chemical Engineering Research and Design. 182, 305-311. DOI: 10.1016/j.cherd.2022.04.005
  37. Yan, Q., Wang, X.-Y., Feng, J.-J., Mei, L.-P., Wang, A.-J. (2021) Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. Journal of Colloid and Interface Science. 582, 701-710. DOI: 10.1016/j.jcis.2020.08.062
  38. Devendra, B.K., Praveen, B.M., Tripathi, V.S., Nagaraju, G., Nagaraju, D.H., Nayana, K.O. (2021) Highly corrosion resistant platinum-rhodium alloy coating and its photocatalytic activity. Inorganic Chemistry Communications. 134, 109065. DOI: 10.1016/j.inoche.2021.109065
  39. Han, Z., Zhang, R.-L., Duan, J.-J., Wang, A.-J., Zhang, Q.-L., Huang, H., Feng, J.-J. (2019) Platinum-rhodium alloyed dendritic nanoassemblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy. 45 (11), 6110-6119. DOI: 10.1016/j.ijhydene.2019.12.155
  40. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter. 21 (39), 395502. DOI: 10.1088/0953-8984/21/39/395502
  41. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S. (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter. 29 (46), 465901. DOI: 10.1088/1361-648X/aa8f79
  42. Kresse, G., Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B. 59 (3), 1758-1775. DOI: 10.1103/PhysRevB.59.1758
  43. Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B. 41 (11), 7892-7895. DOI: 10.1103/PhysRevB.41.7892
  44. Ford, D.C., Xu, Y., Mavrikakis, M. (2005) Atomic and molecular adsorption on Pt(111). Surface Science. 587 (3), 159-174. DOI: 10.1016/j.susc.2005.04.028

Last update:

No citation recorded.

Last update:

No citation recorded.