skip to main content

Tailoring MOF-5 Photocatalysts: Low-Temperature Synthesis and Solvent Variations for Enhanced Performance in Dye Degradation

1Department of Applied Science, School of Engineering and Technology, Sushant University, Gurugram, Haryana, India

2Department of Physics, Netaji Subhas University of Technology, East Campus, Delhi, India

3Department of Nanoscience and Materials, Central University of Jammu, Jammu, India

4 Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura- 140401, Punjab, India

View all affiliations
Received: 26 Oct 2023; Revised: 4 Dec 2023; Accepted: 5 Dec 2023; Available online: 8 Dec 2023; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Metal-organic frameworks (MOFs) are emerging as pivotal porous crystalline materials with diverse applications. Typically, MOFs are synthesized using solvothermal techniques at high temperatures and pressures. In this study, a novel approach was employed to synthesize zinc-based MOFs, specifically MOF-5, at low temperatures (up to 50 °C) via chemical mixing at standard pressures. Varying the temperature and solvents, N-methyl-2-pyrrolidone (NMP) and N,N-dimethylformamide (DMF), in the chemical mixing process, the highest yield of the material was observed with DMF at 50 °C (M1). Two additional samples, M2 and M3, are synthesized at room temperature using DMF and NMP, respectively. Despite similarities in XRD, Raman, and FTIR analyses confirming successful MOF-5 formation, noticeable differences in sample morphology arise due to distinct synthesis conditions, particularly solvent and temperature variations. The MOF-5 samples exhibit UV absorption with varying band gaps. Notably, when employed as photocatalysts for organic dye (methylene blue) degradation, M2 outperforms others, achieving an impressive 85% degradation under simulated solar light irradiation. This work underscores the significance of tuning MOF photocatalyst properties through tailored synthesis routes, recognizing the profound impact of morphology and elemental composition on enhancing photocatalytic dye degradation performance. Copyright © 2024 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photocatalysis; MOF-5; organic dye degradation; synthesis parameters; water treatment.

Article Metrics:

  1. Widiyandari, H., Al Ja'farawy, M.S., Parasdila, H., Astuti, Y., Arutanti, O., Mufti, N., (2023). Temperature impact on the morphological evolution of nitrogen-doped carbon quantum dot-decorated zinc oxide and its influence on highly efficient visible-light photocatalyst. Physica B: Condensed Matter., 669, 415293. DOI: 10.1016/j.physb.2023.415293
  2. Mahmoodi, N.M., Abdi, J. (2018). Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchemical Journal, 144, 436-442. DOI: 10.1016/j.microc.2018.09.033
  3. Husain, Q. (2006). Potential Applications of the Oxidoreductive Enzymes in the Decolorization and Detoxification of Textile and Other Synthetic Dyes from Polluted Water : A Review. Critical Reviews in Biotechnology, 26, 201-221. DOI: 10.1080/07388550600969936
  4. Ajmal, A., Majeed, I., Malik, R.N., Idrissc, H., Nadeem, M.A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Advances, 4, 37003-37026, DOI: 10.1039/C4RA06658H
  5. Chai, W.S., Cheun, J.Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Ho, S., Show, P.L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. DOI: 10.1016/j.jclepro.2021.126589
  6. Deng, D., Aouad, W., Braff, W. A., Schlumpberger, S., Suss, M. E., Bazant, M.Z. (2015). Water purification by shock electrodialysis : Deionization , filtration , separation , and disinfection. Desalination. 357, 77-83, DOI: 10.1016/j.desal.2014.11.011
  7. Wetchakun, K., Wetchakun, N., Sakulsermsuk, S. (2018). An overview of solar/visible light driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19-49. DOI: 10.1016/j.jiec.2018.11.025
  8. Yayuk, A., Fauzan, M., Arnelli, A., Iis, N., (2022). French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 146-156. DOI: 10.9767/bcrec.17.1.12554.146-156
  9. Singh, P., Abdullah, M.M., Ikram, S. (2016). Role of Nanomaterials and their Applications as Photo-catalyst and Senors: A Review. Nano Research & Applications, 2, 1-10
  10. Qasem, K.M.A., Khan, S., Chinnan, S., Saleh, H.A.M., Mantasha, I., Zeeshan, M., Manea, Y.K., Shahid, M. (2022). Sustainable fabrication of Co-MOF@CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr (VI) in aqueous phase. Materials Chemistry and Physics, 291, 126748. DOI: 10.1016/j.matchemphys.2022.126748
  11. Tranchemontagne, D.J., Hunt, J.R., Yaghi, O.M. (2008). Room temperature synthesis of metal organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 64, 8553-8557, DOI: 10.1016/j.tet.2008.06.036
  12. Zulys, A., Adawiah, A., Gunlazuardi, J., Yudhi, M.D.L. (2021). Light-Harvesting Metal Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 170-178. DOI: 10.9767/bcrec.16.1.10309.170-178
  13. Mckinstry, C., Cathcart, R.J., Cussen, E.J., Fletcher, A.J., Patwardhan S.V., Sefcik, (2016). Scalable continuous solvothermal synthesis of metal organic framework (MOF-5). Crystals, 285, 718-725. DOI: 10.1016/j.cej.2015.10.023
  14. Yap, M.H., Fow, K.L., Chen, G.Z. (2017). Synthesis and applications of MOF derived porous nanostructures. Green Energy & Environment, 2, 218-245. DOI: 10.1016/j.gee.2017.05.003
  15. Wang, Q., Gao, Q., Al-enizi A.M. (2020). Recent advances in MOF-based photocatalysis : environmental remediation under visible light. Inorganic Chemistry Frontiers, 7, 300-339. DOI: 10.1039/C9QI01120J
  16. Zhao, D., Cai, C. (2021). Dyes and Pigments Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation : A discussion of the mechanism. Dye Pigment, 185, 108957. DOI: 10.1016/j.dyepig.2020.108957
  17. Zhang, T.Q.S., Wang, M., Zeng, L., Zhou, H., Pana, Z., Qingrong, C. (2018). Two pure MOF‐photocatalysts with readily preparation for the degradation of methylene blue dye under visible light. Dalton Transactions, 47, 4251-4258. DOI: 10.1039/C8DT00156A
  18. Pan, Y., Ding, Q., Singh C.S.A., Kumar, A., Liu, J. (2019). A new Zn(II)-based 3D metal-organic framework with uncommon sev topology and its photocatalytic property for the degradation of organic dyes. CrystEngComm, 21, 4578-4585. DOI: 10.1039/C9CE00759H
  19. Devarayapalli, K.C., Vattikuti, S.V.P., Tvm, S., Yoo, K.S., Nagajyothi, P.S., Shim, J. (2019). Facile synthesis of Ni-MOF using microwave irradiation method and application in the photocatalytic degradation. Materials Research Express, 6, 1150h3. DOI: 10.1088/2053-1591/ab5261
  20. Bugaz, E., Erciyes, A., Andac, M. (2019). Inorganic Chemica. Acta. Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorganica Chimica Acta, 485, 118-124. DOI: 10.1016/j.ica.2018.10.014
  21. Mckinstry, C., Cussen, E.J., Fletcher, A.J., Patwardhan, S.V., Sefcik, J. (2013). Effect of Synthesis Conditions on Formation Pathways of Metal Organic Framework (MOF-5). Crystal Growth & Design, 13, 5481-5489. DOI: 10.1021/cg4014619
  22. Younis, S.A., Kwonc, E.E., Qasim, M., Kima, K., Kimd, T., Kukkar, D., Douf, X., Ali, I. (2020). Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy application. Progress in Energy and Combustion Science, 81, 100870. DOI: 10.1016/j.pecs.2020.100870
  23. Li, J., Cheng, S., Zhao, Q., Long, P., Dong, J., (2009). Synthesis and hydrogen-storage behavior of metal – organic framework MOF-5. International Journal of Hydrogen Energy, 34, 1377-1382. DOI: 10.1016/j.ijhydene.2008.11.048
  24. Yang, H., Liu, X., Song, X., Yang, T., Liang, Z., Fan, C. (2015). In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Transactions of Nonferrous Metals Society of China, 25, 3987-3994. DOI: 10.1016/S1003-6326(15)64047-X
  25. Reza, M., Negar, M., Ashouri, M.F. (2018). Nitrate Adsorption from Aqueous Solution by Metal – Organic Framework MOF-5. Iranian Journal of Science and Technology, Transactions A: Science, 43, 443-449. DOI: 10.1007/s40995-017-0423-6
  26. Umezawa, S., Douura, T., Yoshikawa, K., Tanaka, D., Stolojan, V., Ravi, S., Silva, P., Yoneda, M., Gotoh, K. (2023). Zinc-based metal-organic frameworks for high-performance supercapacitor electrodes: Mechanism underlying pore generation. Energy & Environmental Materials, 6, e12320. DOI: 10.1002/eem2.12320
  27. Fiaz, M., Kashif, M., Fatima, M., Rabia, S., Muhammad, B., Asghar, A. (2020). Synthesis of Efficient TMS @ MOF ‑ 5 Catalysts for Oxygen Evolution Reaction. Catalysis Letters, 150, 2648-2659. DOI: 10.1007/s10562-020-03155-6
  28. Ataei, F., Dorranian, D., (2021). Synthesis of MOF-5 nanostructures by laser ablation method in liquid and evaluation of its properties. Journal of Materials Science: Materials in Electronics, 32, 3819-3833. DOI: 10.1007/s10854-020-05126-4
  29. Yang, S.J., Im, J.H., Kim, T., Lee, K., Park, C.R. (2011). MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Journal of Hazardous Materials, 186, 376-382. DOI: 10.1016/j.jhazmat.2010.11.019
  30. Zhang, Y., Lan, D., Wang, Y., Cao, H., Jiang, H. (2011). MOF-5 decorated hierarchical ZnO nanorod arrays and its photoluminescence. Physica E: Low-dimensional Systems and Nanostructures, 43, 1219-1223. DOI: 10.1016/j.physe.2011.02.004
  31. Biserčić, M.S., Marjanović, B., Vasiljević, B.N., Mentus, S., Zasońska, B.A., Ćirić, marjanović, G. (2019). Quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Microporous and Mesoporous Materials, 278, 23-29. DOI: 10.1016/j.micromeso.2018.11.005
  32. Zhang, S., Li, D., Guo, D., Zhang, H., Shi, W., Cheng, P., Wojtas, L., Zaworotko, M.J. (2015). Synthesis of a Chiral Crystal Form of MOF-5, CMOF-5, by Chiral Induction. Journal of the American Chemical Society, 137, 15406-15409. DOI: 10.1021/jacs.5b11150
  33. Rather, R.A., Siddiqui, Z.N. (2019). Silver phosphate supported on metal–organic framework (Ag3PO4@MOF-5) as a novel heterogeneous catalyst for green synthesis of indenoquinolinediones. Applied Organometallic Chemistry, 33, e5176. DOI: 10.1002/aoc.5176
  34. Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., Lillerud, K.P., Bjorgenb, M., Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal organic framework : ZnO quantum dot behaviour. Chemical Communications, 5, 2300-2301. DOI: 10.1039/B407246D
  35. Saha, D., Deng, S. (2010). Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. Journal of Colloid and Interface Science, 348, 615-620. DOI: 10.1016/j.jcis.2010.04.078
  36. Mahalakshmi, G., Balachandran, V. (2014). FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of Trimesic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 535-547, DOI: 10.1016/j.saa.2014.01.061
  37. Yang, H.M., Song, X.L., Yang, T.L., Liang, Z.H., Fan, C.M., Hao, X.G. (2014). Electrochemical synthesis of fl ower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Advances, 4, 15720-15726. DOI: 10.1039/C3RA47744D
  38. Lua, C., Liub, J., Xiao, K., Harris, A.T., (2010). Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chemical Engineering Journal, 156, 465–470. DOI: 10.1016/j.cej.2009.10.067
  39. Manzoor, U., Zahra, F.T., Rafique, S., Moin, M.T., Mujahid, M. (2015). Effect of Synthesis Temperature, Nucleation Time, and Postsynthesis Heat Treatment of ZnO Nanoparticles and Its Sensing Properties. Journal of Nanomaterials, 2015, 189058. DOI: 10.1155/2015/189058
  40. Wang, S., Xie, X., Xia, W., Cui, J., Zhang, S., Du, X. (2020). Study on the structure activity relationship of the crystal MOF-5 synthesis , thermal stability and N2 adsorption property. High Temperature Materials and Processes, 39, 171-177. DOI: 10.1515/htmp-2020-0034
  41. Priya, B., Jasrotia, P., Kumar, A., Singh, V., Kumar, T. (2022). Structural, optical, and electrical properties of V2O5 thin films : Nitrogen implantation and the role of different substrates. Frontiers in Materials, 9, 1-13, DOI: 10.3389/fmats.2022.1049189
  42. Murugesan, C., Chandrasekaran, G. (2015). Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Advances, 5, 73714-73725. DOI: 10.1039/C5RA14351A
  43. Brozek, C.K., Michaelis, V.K., Ong, T., Bellarosa, L., Lopez, Griffin, R.G., Dinca, M. (2015). Dynamic DMF Binding in MOF‑5 Enables the Formation of Metastable Cobalt-Substituted MOF‑5 Analogues. ACS Central Science, 1, 252-260. DOI: 10.1021/acscentsci.5b00247
  44. Chen, B., Wang, X., Zhang, Q., Xi, X., Cai, J., Qi, H., Shi, S., Wang, J., Yuan, D., Fang, M. (2010). Synthesis and characterization of the interpenetrated MOF-5. Journal of Materials Chemistry, 20, 3758-3767. DOI: 10.1039/B922528E
  45. Chatterjee, A., Jana, A.K., Basu, J.K. (2020). Silica supported binary metal organic framework for removing organic dye involving combined effect of adsorption followed by photocatalytic degradation. Materials Research Bulletin, 138, 111227. DOI: 10.1016/j.materresbull.2021.111227
  46. Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z., Manivannan, A., Zhi, M., Li, M., Wu, N., (2009). Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. Journal of the American Chemical Society, 131, 12290-12297. DOI: 10.1021/ja903781h
  47. Alvaro, M., Carbonell, E., Ferrer, B., Xamena, F.X.L., Garcia H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry – A European Journal, 13, 5106–5112. DOI: 10.1002/chem.200601003
  48. Tong, Y., Li, Y., Sun, L., Yang, R., Zhang, S., Fu, Y., Cao, L., Chen, R. (2020). The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids. Separation and Purification Technology, 250, 117142. DOI: 10.1016/j.seppur.2020.117142
  49. Adawiah, A., Oktavia, W., Saridewi N., Azhar F.M., Fitria R.N., Gunawan M.S., Komala S., Zulys A. (2022). Synthesis Metal-Organic Framework (MOFs) Cr-PTC-HIna Modulated Isonicotinic Acid for Methylene Blue Photocatalytic Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 383-393. DOI: 10.9767/bcrec.17.2.13930.383-393
  50. Angel, L., Herrera, A., Reyes, P.K.C., Flores, A.M.H., Martínez, L.T., Villanueva, J.M.R., (2020). BDC-Zn MOF sensitization by MO/MB adsorption for photocatalytic hydrogen evolution under solar light. Materials Science in Semiconductor Processing, 109, 104950. DOI: 10.1016/j.mssp.2020.104950
  51. Yao, T., Tan, Y., Zhou, Y., Chen, Y., Xiang, M. (2022). Preparation of core-shell MOF-5/Bi2WO6 composite for the enhanced photocatalytic degradation of pollutants. Journal of Solid State Chemistry, 308, 122882. DOI: 10.1016/j.jssc.2022.122882
  52. Sathya, M., Selvan, G., Karunakaran, M. (2023). Synthesis and characterization of cadmium doped on ZnO thin films prepared by SILAR method for photocatalytic degradation properties of MB under UV irradiation. The European Physical Journal Plus, 138, 67. DOI: 10.1140/epjp/s13360-023-03667-1

Last update:

No citation recorded.

Last update:

No citation recorded.