skip to main content

Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst

1Research Center for Chemistry, National Research and Innovation Agency (BRIN-Indonesia), South Tangerang 15314, Indonesia

2Department of Chemical Engineering, University of Sonan Bonang, East Java 62311, Indonesia

3Research Center for Mining Technology, National Research and Innovation Agency (BRIN-Indonesia), South Lampung 35361, Indonesia

4 Research Center for Agroindustry, National Research and Innovation Agency (BRIN-Indonesia), Cibinong Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia

5 Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN-Indonesia), Cibinong 16911, Indonesia

6 Department of Chemistry, University of Sriwijaya, South Sumatera 30662, Indonesia

View all affiliations
Received: 9 Jan 2024; Revised: 16 Feb 2024; Accepted: 16 Feb 2024; Available online: 24 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image

In this paper, the catalysts (Nano-HZSM-5 and Fe-La/nano HZSM-5) were prepared with incipient wetness impregnation and applied for hydrocracking of Sunan candlenut oil. The hydrocracking process was conducted in a batch reactor with a pressure of 20-30 bar H2 gas for 2 h under various temperatures. The results demonstrated that hydrocracking of Sunan candlenut oil using nano HZSM-5 and Fe-La/NHZ catalysts could be converted into aromatic hydrocarbons, and the reaction temperature affected hydrocarbon production. The aromatic compounds, such as propyl-benzene, 1-ethyl-3-methylbenzene, heptyl-benzene, 2-ethyl-naphthalene, etc., reached 35.51% over the Fe-La/NHZ_2 catalyst. In all cases, the zeolite-based catalysts are the most suitable to produce aromatic hydrocarbons. Metal impregnated (Fe and La) on nano HZSM-5 catalyst could improve the aromatics compounds due to increased metal and acid sites. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (

Keywords: Hydrocracking; nano HZSM-5; Fe-La/NHZ catalysts; Sunan candlenut oil; aromatics compounds
Funding: National Research and Innovation Agency-LPDP (RIIM batch 3, 2023) ; JASTIP-net Program from Japan (2023)

Article Metrics:

  1. Ritonga, M. Y. & Giovani, M. R. R. (2016). Pembuatan metil ester dari minyak kemiri sunan dengan keberadaan co-solvent aseton dan katalis heterogennatrium silikat terkalsinasi. Teknik Kimia Usu, 5, 17-23
  2. Haryani, N., Harahap, H., Taslim., Irvan. (2020). Biogasoline production via catalytic cracking process using zeolite and zeolite catalyst modified with metals: A review. IOP Conference Series: Materials Science and Engineering, 801(1). DOI: 10.1088/1757-899X/801/1/012051
  3. Anis, S. F., Singaravel, G., Hashaikeh, R. (2018). Hierarchical nano zeolite-Y hydrocracking composite fibers with highly efficient hydrocracking capability. RSC Advances, 8(30), 16703–16715. DOI: 10.1039/c8ra02662a
  4. Al-Muttaqii, M., Kurniawansyah, F., Prajitno, D. H., Roesyadi, A. (2019). Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel. Indonesian Journal of Chemistry, 19(2), 319–327. DOI: 10.22146/ijc.33590
  5. Yun. J.H., Lobo, R.F. (2014). Radical cation intermediates in propane dehydrogenation and propene hydrogenation over H-[Fe] Zeolites. The Journal of Physical Chemistry C, 118(47), 27292–27300. DOI: 10.1021/jp504453n
  6. Lu, J., Zhao, Z., Xu, C., Zhang, Pu., Duan, A. (2006). FeHZSM-5 molecular sieves–Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catalysis Communications, 7(4), 199–203. DOI: 10.1016/j.catcom.2005.10.011
  7. Ishihara, A., Kodama, Y., Hashimoto, T. (2021). Effect of matrix on aromatics production by cracking and dehydrocyclization of n-pentane using Ga ion-exchanged ZSM-5- alumina composite catalysts. Fuel Processing Technology, 213. DOI: 10.1016/j.fuproc.2020.106679
  8. Zecchina, A., Rivallan, M., Berlier, G., Lamberti, C., Ricchiardi, G. (2007). Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Physical Chemistry Chemical Physics, 9(27), 3483–99. DOI: 10.1039/b703445h
  9. Li, Z., Yang, X., Han, Y., Rong, L. (2020). Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst. International Journal of Hydrogen Energy. 45(41), 21364-21379. DOI: 10.1016/j.ijhydene.2020.05.201
  10. Fan, K., Yang, X., Liu, J., Rong, L. (2015). Effect of reducing catalyst coke by La loading in hydrocracking of Jatropha oil. RSC Advances, 5(42), 33339–33346. DOI: 10.1039/c5ra04205d
  11. Liu, S., Zhu, Q., Guan, Q., He, L., Li, W. (2015). Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource Technology. 183, 93–100. DOI: 10.1016/j.biortech.2015.02.056
  12. Khalaf, W. M., Al-Mashhadani, M.H. (2022). Synthesis and characterization of lanthanum oxide la2O3 net-like nanoparticles by new combustion method. Biointerface Research in Applied Chemistry. 12(3), 3066-3075. DOI: 10.33263/BRIAC123.30663075
  13. Fahlepy, M. R., Tiwow, V. A., Subaer. (2018). Characterization of magnetite (Fe3O4) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application. Journal of Physics: Conference Series. 997(1). DOI: 10.1088/1742-6596/997/1/012036
  14. Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., Yusuf, M. (2020). Characteristic and Catalytic Performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for Hydrocracking of MEFA Rubber Seed Oil into Biogasoline Fraction. Catalysts, 10, 121. DOI: 10.3390/catal10010121
  15. Gao, C., Zhang, J., Xing, E., Xie, Y., Zhao, H., Ning, P., Shi, Y. (2021). Upgrading of palmitic acid to diesel-like fuels over Ni@HZSM-5 bifunctional catalysts through the in situ encapsulation method. Molecular Catalysis. 511, 111715. DOI: 10.1016/j.mcat.2021.111715
  16. Gea, S., Haryono, A., Andriayani, A., Sihombing, J. L., Pulungan, A. N., Nasution, T., Rahayu, R., Hutapea, Y. A. (2020). The Effect of Chemical Activation Using Base Solution With Various Concentrations Towards Sarulla Natural Zeolite. Elkawnie. 6(1), 85. DOI: 10.22373/ekw.v6i1.6913
  17. Muttaqii, M.A., Kurniawansyah, F., Prajitno, D. H., Roesyadi, A. (2019). Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over Ni-Fe/HZSM-5 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis. 14 (2), 309-319. DOI: 10.9767/bcrec.14.2.2669.309-319
  18. Zhao, X., Wei, L., Julson, J., Qiao, Q., Dubey, A., Anderson, G. (2015). Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. New Biotechnology. 32(2), 300–312. DOI: 10.1016/j.nbt.2015.01.004
  19. Chen, Y., Yang, F., Wu, L., Wang, C., Yang, Z. (2011). Co-deoxy-liquefaction of biomass and vegetable oil to hydrocarbon oil: Influence of temperature, residence time, and catalyst. Bioresource Technology. 102: 1933-1941. DOI: 10.1016/j.biortech.2010.08.038
  20. Botas J A., Serrano D.P., Garcia A., Ramos R. (2014). Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5. Applied Catalyst B: Environmental. 145, 205-215. DOI: 10.1016/j.apcatb.2012.12.023
  21. Chang, C.D., Silvestri, A.J. (1977). The conversion of methanol and other compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis. 47, 249-259. DOI: 10.1016/0021-9517(77)90172-5
  22. Kurniawan, H.H., Dwiatmoko, A.A., Dahnum, D., Yati, I., Rinaldi, N., Amin, M., Prasetyo, E., Muttaqii, M.A. (2023). Hydrocracking of palm oil over metal transition/natural zeolite catalyst. AIP Conference Proceedings. 2902 (1): 040005. DOI: 10.1063/5.0173200
  23. Weisz, P.B., Haag, W.O., Rodewald, P.G. (1979). Catalytic production of high grade fuel (gasoline) from biomass compounds by shape selective catalysis. Science. 206 (4414) : 57-8. DOI: 10.1126/science.206.4414.57
  24. Wang, H., Yan, S., Salley, S.O., Ng, K.S. (2012). Hydrocarbon Fuels Production from Hydrocracking of Soybean Oil Using Transition Metal Carbides and Nitrides Supported on ZSM-5. Industrial & Engineering Chemistry Research.51(30): 10066-10073. DOI: 10.1021/ie3000776
  25. Ngo, T. A., Kim, J., Kim, S. K., Kim, S. S. (2010). Pyrolysis of soybean oil with H-ZSMS (Proton-exchange of Zeolite Socony Mobil #5) and MCM41 (Mobil Composition of Matter No. 41) catalysts in a fixed-bed reactor. Energy. 35, 2723–2728. DOI: 10.1016/
  26. Chen, C., Fan, D., Ling, H., Huang, X., Yang, G., Cai, D., Zhao, J., Bi, Y. (2022). Microwave catalytic co-pyrolysis of Chlorella vulgaris and high-density polyethylene over activated carbon supported monometallic: Characteristics and bio-oil analysis. Bioresource Technology. 363, 127881. DOI: 10.1016/j.biortech.2022.127881
  27. Li, X., Dong, W., Zhang, J., Shao, S., Cai, Y. (2020). Preparation of bio-oil derived from catalyticupgrading of biomass vacuum pyrolysis vapor over metal-loaded HZSM-5 zeolites. Journal of the Energy Institute. 93(2), 605–613. DOI: 10.1016/j.joei.2019.06.005
  28. Qi, X., Fan, W. (2019). Selective Production of Aromatics by Catalytic Fast Pyrolysis of Furan with in Situ Dehydrogenation of Propane. ACS Catalysis. 9(3), 2626–2632. DOI: 10.1021/acscatal.8b04859
  29. Mo, N., Savage, P.E. (2014), Hydrothermal catalytic cracking of fatty acids with HZSM-5. ACS Sustainable Chemistry & Engineering. 2 (1), 88–94. DOI: 10.1021/sc400368n
  30. Kim, S. K., Brand, S., Lee, H., Kim, Y., Kim, J. (2013), Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chemical Engineering Journal. 228, 114–123. DOI: 10.1016/j.cej.2013.04.095
  31. Al-Muttaqii, M., Kurniawansyah, F., Prajitno, D. H., Roesyadi, A. (2019). Hydrocracking of coconut oil over Ni-Fe/HZSM-5 catalyst to produce hydrocarbon biofuel. Indonesian Journal of Chemistry, 19(2), 319-327. DOI: 10.22146/ijc.33590

Last update:

No citation recorded.

Last update:

No citation recorded.