skip to main content

The Effect of Solvent on the Characteristics of FeBTC MOF as a Potential Heterogenous Catalyst Prepared via Green Mechanochemical Process

1Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Serpong, Tangerang Selatan, 15314, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, 16424, Indonesia

3Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), via Anguillarese 301, Roma, 00123, Italy

Received: 5 Jan 2024; Revised: 7 Feb 2024; Accepted: 8 Feb 2024; Available online: 11 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, the synthesis of FeBTC (BTC = 1,3,5-benzenetricarboxylate) also known as MIL-100 (Fe) metal organic framework (MOF) has been carried out successfully using green mechanochemical method (neat grinding and liquid assisted grinding). The effect of solvent used in the synthesis was investigated for the first time to elucidate the physicochemical properties of FeBTC including crystal structure, thermal stability, pore size and specific surface area. The physicochemical properties of all FeBTC obtained in this study were compared to commercial FeBTC (Basolite F-300), characterized using powder X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and nitrogen physisorption isotherms. All Fe-BTC MOF synthesized in this study showed improved textural properties compared to commercial Basolite F-300 such as higher crystallinity, higher surface area and larger pore size. It was found that the best synthesis method was by using the mixture of ethanol and water with equal volume ratio as solvent. The highest BET surface area of FeBTC synthesized using this method was 972 m2/g for FeBTC-EtOH/H2O. This value is 2.3 times higher than the surface area of commercial Basolite F-300 (418 m2/g). FeBTC with higher surface area is expected to have higher catalytic activity which makes this FeBTC an excellent candidate as a heterogenous catalyst for many reactions such as aldol condensation or esterification reaction. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: FeBTC MOF; MIL-100(Fe); Mechanochemical synthesis; Solvent effect; Heterogenous catalyst
Funding: National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy; International Centre for Theoretical Physics (ICTP) Italy

Article Metrics:

  1. O’Keeffe, M., Peskov, M.A., Ramsden, S.J., Yaghi, O.M. (2008). The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Accounts of Chemical Research, 41(12), 1782–1789. DOI: 10.1021/ar800124u
  2. Guillerm, V., Kim, D., Eubank, J.F., Luebke, R., Liu, X., Adil, K., Lah, M.S., Eddaoudi, M. (2014). A supermolecular building approach for the design and construction of metal–organic frameworks. Chemical Society Reviews, 43(16), 6141–6172. DOI: 10.1039/C4CS00135D
  3. Hu, X., Lou, X., Li, C., Ning, Y., Liao, Y., Chen, Q., Mananga, E.S., Shen, M., Hu, B. (2016). Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Advances, 6(115), 114483–114490. DOI: 10.1039/C6RA22738D
  4. Castañeda Ramírez, A.A., Rojas García, E., López Medina, R., Contreras Larios, J.L., Suárez Parra, R., Maubert Franco, A.M. (2021). Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium, and Ibuprofen Using a Stable Fe3O4–FeBTC Metal–Organic Framework. Materials, 14(9) DOI: 10.3390/ma14092293
  5. Zhang, H., Hu, X., Li, T., Zhang, Y., Xu, H., Sun, Y., Gu, X., Gu, C., Luo, J., Gao, B. (2022). MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. Journal of Hazardous Materials, 429, 128271. DOI: https://doi.org/10.1016/j.jhazmat.2022.128271
  6. Martínez, F., Leo, P., Orcajo, G., Díaz-García, M., Sanchez-Sanchez, M., Calleja, G. (2018). Sustainable Fe-BTC catalyst for efficient removal of mehylene blue by advanced fenton oxidation. Catalysis Today, 313, 6–11. DOI: https://doi.org/10.1016/j.cattod.2017.10.002
  7. Zhu, B.-J., Yu, X.-Y., Jia, Y., Peng, F.-M., Sun, B., Zhang, M.-Y., Luo, T., Liu, J.-H., Huang, X.-J. (2012). Iron and 1,3,5-Benzenetricarboxylic Metal–Organic Coordination Polymers Prepared by Solvothermal Method and Their Application in Efficient As(V) Removal from Aqueous Solutions. The Journal of Physical Chemistry C, 116(15), 8601–8607. DOI: 10.1021/jp212514a
  8. Bezverkhyy, I., Weber, G., Bellat, J.-P. (2016). Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: Effect of temperature and pH. Microporous and Mesoporous Materials, 219, 117–124. DOI: https://doi.org/10.1016/j.micromeso.2015.07.037
  9. Fang, Y., Yang, Z., Li, H., Liu, X. (2020). MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination. Environmental Science and Pollution Research, 27(5), 4703–4724. DOI: 10.1007/s11356-019-07318-w
  10. Zhang, H., Hu, X., Li, T., Zhang, Y., Xu, H., Sun, Y., Gu, X., Gu, C., Luo, J., Gao, B. (2022). MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. Journal of Hazardous Materials, 429, 128271. DOI: https://doi.org/10.1016/j.jhazmat.2022.128271
  11. Delpiano, G.R., Tocco, D., Medda, L., Magner, E., Salis, A. (2021). Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. International Journal of Molecular Sciences, 22(2) DOI: 10.3390/ijms22020788
  12. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.-S., Hwang, Y.K., Marsaud, V., Bories, P.-N., Cynober, L., Gil, S., Férey, G., Couvreur, P., Gref, R. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172–178. DOI: 10.1038/nmat2608
  13. Quijia, C.R., Lima, C., Silva, C., Alves, R.C., Frem, R., Chorilli, M. (2021). Application of MIL-100(Fe) in drug delivery and biomedicine. Journal of Drug Delivery Science and Technology, 61, 102217. DOI: https://doi.org/10.1016/j.jddst.2020.102217
  14. Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., Grenèche, J.-M., Serre, C., Daturi, M., Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060–2065. DOI: 10.1021/cs300345b
  15. Pilloni, M., Padella, F., Ennas, G., Lai, S., Bellusci, M., Rombi, E., Sini, F., Pentimalli, M., Delitala, C., Scano, A., Cabras, V., Ferino, I. (2015). Liquid-assisted mechanochemical synthesis of an iron carboxylate Metal Organic Framework and its evaluation in diesel fuel desulfurization. Microporous and Mesoporous Materials, 213, 14–21. DOI: https://doi.org/10.1016/j.micromeso.2015.04.005
  16. Liu, F., Ma, X., Li, H., Wang, Y., Cui, P., Guo, M., Yaxin, H., Lu, W., Zhou, S., Yu, M. (2020). Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel. Fuel, 266, 117149. DOI: https://doi.org/10.1016/j.fuel.2020.117149
  17. Li, H., Wang, J., Ma, X., Wang, Y., Li, G., Guo, M., Cui, P., Lu, W., Zhou, S., Yu, M. (2021). Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production. Renewable Energy, 179, 1191–1203. DOI: https://doi.org/10.1016/j.renene.2021.07.122
  18. Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal Sci Technol, 2(2), 324–330. DOI: 10.1039/C2CY00376G
  19. Zhang, F., Jin, Y., Shi, J., Zhong, Y., Zhu, W., El-Shall, M.S. (2015). Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chemical Engineering Journal, 269, 236–244. DOI: https://doi.org/10.1016/j.cej.2015.01.092
  20. Yati, I., Pentimalli, M., Padela, F. (2022). Synthesis of high surface area copper trimesate MOF via mechanochemical method. AIP Conference Proceedings, 2493(1), 060008. DOI: 10.1063/5.0110018
  21. Głowniak, S., Szczęśniak, B., Choma, J., Jaroniec, M. (2021). Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today, 46, 109–124. DOI: https://doi.org/10.1016/j.mattod.2021.01.008
  22. Kumar, S., Jain, S., Nehra, M., Dilbaghi, N., Marrazza, G., Kim, K.-H. (2020). Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coordination Chemistry Reviews, 420, 213407. DOI: https://doi.org/10.1016/j.ccr.2020.213407
  23. Seetharaj, R., Vandana, P. V, Arya, P., Mathew, S. (2019). Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry, 12(3), 295–315. DOI: https://doi.org/10.1016/j.arabjc.2016.01.003
  24. Akhbari, K., Morsali, A. (2011). Effect of the guest solvent molecules on preparation of different morphologies of ZnO nanomaterials from the [Zn2(1,4-bdc)2(dabco)] metal-organic framework. Journal of Coordination Chemistry, 64(20), 3521–3530. DOI: 10.1080/00958972.2011.623778
  25. Yang, D., Gates, B.C. (2019). Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 9(3), 1779–1798. DOI: 10.1021/acscatal.8b04515
  26. Han, Q., Wang, Z., Chen, X., Jiao, C., Li, H., Yu, R. (2019). Facile Synthesis of Fe-based MOFs(Fe-BTC) as Efficient Adsorbent for Water Purifications. Chemical Research in Chinese Universities, 35(4), 564–569. DOI: 10.1007/s40242-019-8415-z
  27. Mazaj, M., Birsa Čelič, T., Mali, G., Rangus, M., Kaučič, V., Zabukovec Logar, N. (2013). Control of the Crystallization Process and Structure Dimensionality of Mg–Benzene–1,3,5-Tricarboxylates by Tuning Solvent Composition. Crystal Growth & Design, 13(8), 3825–3834. DOI: 10.1021/cg400929z
  28. Majano, G., Pérez-Ramírez, J. (2013). Scalable Room-Temperature Conversion of Copper(II) Hydroxide into HKUST-1 (Cu3(btc)2). Advanced Materials, 25(7), 1052–1057. DOI: https://doi.org/10.1002/adma.201203664
  29. Medina-Velazquez, D.Y., Caldiño, U., Morales-Ramirez, A., Reyes-Miranda, J., Lopez, R.E., Escudero, R., Ruiz-Guerrero, R., Morales Perez, M.F. (2019). Synthesis of luminescent terbium-thenoyltriflouroacetone MOF nanorods for green laser application. Optical Materials, 87, 3–10. DOI: https://doi.org/10.1016/j.optmat.2018.08.021
  30. Satya, A.D.M., Zulys Agustino, Saepudin, E. (2022). Green synthesis of iron based metal-organic framework by microwave and its potential as drug delivery system. AIP Conference Proceedings, 2391(1), 050002. DOI: 10.1063/5.0072883
  31. Li, Y., Tang, Z., Chen, C. (2021). The Modulating Effect of Ethanol on the Morphology of a Zr-Based Metal–Organic Framework at Room Temperature in a Cosolvent System. Crystals, 11(4) DOI: 10.3390/cryst11040434
  32. Kevat, S., Lad, V.N. (2023). Green synthesis of zirconium-based MOF-808 by utilizing sustainable synthesis approaches. Journal of Organometallic Chemistry, 999, 122832. DOI: https://doi.org/10.1016/j.jorganchem.2023.122832
  33. Zhang, B., Zhang, J., Liu, C., Sang, X., Peng, L., Ma, X., Wu, T., Han, B., Yang, G. (2015). Solvent determines the formation and properties of metal–organic frameworks. RSC Adv, 5(47), 37691–37696. DOI: 10.1039/C5RA02440D
  34. Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., Robert McElroy, C., Sherwood, J. (2016). Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 4(1), 7. DOI: 10.1186/s40508-016-0051-z
  35. Mendiburu, A.Z., Lauermann, C.H., Hayashi, T.C., Mariños, D.J., Rodrigues da Costa, R.B., Coronado, C.J.R., Roberts, J.J., de Carvalho, J.A. (2022). Ethanol as a renewable biofuel: Combustion characteristics and application in engines. Energy, 257, 124688. DOI: https://doi.org/10.1016/j.energy.2022.124688
  36. Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., Férey, G., Grenèche, J.-M., Lefebvre, F., Chang, J.-S., Hwang, Y.-K., Lebedev, O., Turner, S., Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J Mater Chem, 21(4), 1226–1233. DOI: 10.1039/C0JM02381G
  37. Bavykina, A., Kolobov, N., Khan, I.S., Bau, J.A., Ramirez, A., Gascon, J. (2020). Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 120(16), 8468–8535. DOI: 10.1021/acs.chemrev.9b00685
  38. Fadilah, C., Kurniawan, C., Ridwan, M., Al Muttaqii, M., Agustian, E., Andreani, A.S., Dwiatmoko, A.A., Yati, I. (2023). Synthesis of superacid sulfated TiO2 nanowires for esterification of waste cooking oil. Reaction Kinetics, Mechanisms and Catalysis, 136(3), 1529–1544. DOI: 10.1007/s11144-023-02401-3
  39. Sanchez-Sanchez, M., de Asua, I., Ruano, D., Diaz, K. (2015). Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework. Crystal Growth & Design, 15(9), 4498–4506. DOI: 10.1021/acs.cgd.5b00755

Last update:

No citation recorded.

Last update:

No citation recorded.