skip to main content

Synthesis of CuO, ZnO and SnO2 Coupled TiO2 Photocatalyst Particles for Enhanced Photodegradation of Rhodamine B Dye

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Received: 7 Aug 2023; Revised: 3 Oct 2023; Accepted: 3 Oct 2023; Available online: 4 Oct 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Environmental pollution is a global problem and dye pollution is one of the major factors. TiO2 shows promising photocatalytic properties that can degrade organic pollutants such as dye under ultraviolet (UV) irradiation. However, TiO2 possesses some disadvantages such as a wide band gap and a high recombination rate of electron-hole pairs. Coupling TiO2 with various metal oxides can enhance photocatalytic properties. In this work, photodepositon (reduction of metal ions on TiO2) followed by the thermal oxidation method were used for the coupling of TiO2 with CuO, ZnO, or SnO2 under various methanol concentrations (25 vol% or 50 vol%) and deposition duration (1 h or 3 h) to observe the effect of these parameters on the photocatalytic degradation activity on Rhodamine B (RhB) dye (up to 90 min). The rate constant of the photodegradation reaction (k) has improved from 0.0141 min1 (uncoupled TiO2) to 0.0151~0.0368 min1. Overall, CuO/TiO2 and SnO2/TiO2 samples have shown similar photocatalytic properties (average rate constants of 0.0341 min1 and 0.0327 min-1, respectively), and both performed better than ZnO/TiO2 in terms of RhB photodegradation (average rate constants of 0.0197 min1). The difference in photocatalytic performance can be explained by the bandgap of metal oxides and their relative band positions with TiO2. Lastly, CuO/TiO2 (50 vol%, 3 h) and SnO2/TiO2 (50 vol%, 3 h) have shown the best photocatalytic properties respectively due to a longer deposition time and higher concentration methanol, resulting in more deposited materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photodegradation; Photodeposition; TiO2; CuO; SnO2; Photocatalyst
Funding: Ministry Of Higher Education Malaysia under contract FRGS/1/2022/STG05/USM/03/3

Article Metrics:

  1. Syuhadah, N. (2017). Environmental contamination by batik wastewater and the potential application of activated carbon from pineapple waste for wastewater treatment. Thesis, Universiti Sains Malaysia
  2. Rajlaxmi, R., Gupta, N., Behere, R.P., Layek, R.K., Kuila, B.K. (2021). Polymer nanocomposite membranes and their application for flow catalysis and photocatalytic degradation of organic pollutants. Materials Today Chemistry, 22, 100600. DOI: 10.1016/j.mtchem.2021.100600
  3. Sun, Z., Vollpracht, A., van der Sloot, H.A. (2019). pH dependent leaching characterization of major and trace elements from fly ash and metakaolin geopolymers. Cement and Concrete Research, 125, 105889. DOI: 10.1016/j.cemconres.2019.105889
  4. Kulkarni, S.G. (2013). Removal of organic matter from domestic waste water by adsorption. International Journal of Science, Engineering and Technology Research, 2, 1836–1839
  5. Bhatti, Z.A., Mahmood, Q., Raja, I.A., Malik, A.H., Khan, M.S., Wu, D. (2011). Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution. Physics and Chemistry of the Earth, 36(9–11), 465–469. DOI: 10.1016/j.pce.2010.03.022
  6. Ghernaout, D. (2017). Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. American Journal of Chemical Engineering, 5(4), 81. DOI: 10.11648/j.ajche.20170504.15
  7. Bai, N., Liu, X., Li, Z., Ke, X., Zhang, K., Wu, Q. (2021). High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods. Journal of Sol-Gel Science and Technology, 99(1), 92–100. DOI: 10.1007/s10971-021-05552-8
  8. Xu, Q., Zhang, L., Yu, J., Wageh, S., Al-Ghamdi, A.A., Jaroniec, M. (2018). Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today, 21(10), 1042–1063. DOI: 10.1016/j.mattod.2018.04.008
  9. Ameta R., Solanki M.S., Benjamin S., Ameta S.C. (2023). Photocatalysis. In S.C. Ameta, R. Ameta Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. Institute of Physics Publishing. DOI: 10.1016/B978-0-12-810499-6.00006-1
  10. Oshida, Y. (2013). Oxidation and Oxides. In Y. Oshida Bioscience and Bioengineering of Titanium Materials. Elsevier B.V. DOI: 10.1016/B978-0-444-62625-7.00004-2
  11. Dontsova, T.A., Kutuzova, A.S., Bila, K.O., Kyrii, S.O., Kosogina, I.V., Nechyporuk, D.O. (2020). Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. Journal of Nanomaterials, 2020, 8349480. DOI: 10.1155/2020/8349480
  12. Chen, X., Mao, S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 107(7), 2891–2959. DOI: 10.1021/cr0500535
  13. Ohtani, B. (2010). Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. DOI: 10.1016/j.jphotochemrev.2011.02.001
  14. Hosseini-Sarvari, M., Jafari, F., Mohajeri, A., Hassani, N. (2018). Cu2O/TiO2 nanoparticles as visible light photocatalysts concerning C(sp2)-P bond formation. Catalysis Science and Technology, 8(16), 4044–4051. DOI: 10.1039/c8cy00822a
  15. Karami, A. (2010). Iranian Chemical Society. Synthesis of TiO2 Nano Powder by the Sol-Gel Method and Its Use as a Photocatalyst. Journal of the Iranian Chemical Society, 7, S154–S160. DOI: 10.1007/BF03246194
  16. Zhang, F.B., Li, H.L. (2007). Hydrothermal synthesis of TiO2 nanofibres. Materials Science and Engineering C, 27(1), 80–82. DOI: 10.1016/j.msec.2006.02.001
  17. Mirmasoomi, S.R., Ghazi, M.M., Galedari, M. (2017). Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Separation and Purification Technology, 175, 418–427. DOI: 10.1016/j.seppur.2016.11.021
  18. Fan, Y., Zhang, N., Zhang, L., Shao, H., Wang, J., Zhang, J., Cao, C. (2013). Co3O4-coated TiO2 nanotube composites synthesized through photo-deposition strategy with enhanced performance for lithium-ion batteries. Electrochimica Acta, 94, 285–293. DOI: 10.1016/j.electacta.2013.01.114
  19. Jiang, C., Zhang, L., Gao, F., Huang, X., Lei, R., Ye, Y., Yuan, J., Liu, P. (2020). Promoting photocatalytic hydrogen production by a core-shell CdS@MoO: X photocatalyst connected by an S-Mo “bridge.” Catalysis Science and Technology, 10(5), 1368–1375. DOI: 10.1039/c9cy02492a
  20. Zhang, H., Banfield, J.F. (2000). Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. Journal of Physical Chemistry B, 104(15), 3481–3487. DOI: 10.1021/jp000499j
  21. Carp, O., Huisman, C.L., Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  22. Hernández-Alonso, M.D., Fresno, F., Suárez, S., Coronado, J.M. (2009). Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy and Environmental Science, 2(12), 1231–1257. DOI: 10.1039/b907933e
  23. Das, A., Kumar, P. M., Bhagavathiachari, M., Nair, R.G. (2020). Hierarchical ZnO-TiO2 nanoheterojunction: A strategy driven approach to boost the photocatalytic performance through the synergy of improved surface area and interfacial charge transport. Applied Surface Science, 534, 147321. DOI: 10.1016/j.apsusc.2020.147321
  24. Yamamoto, M., Minoura, Y., Akatsuka, M., Ogawa, S., Yagi, S., Yamamoto, A., Yoshida, H., Yoshida, T. (2020). Comparison of platinum photodeposition processes on two types of titanium dioxide photocatalysts. Physical Chemistry Chemical Physics, 22(16), 8730–8738. DOI: 10.1039/c9cp06988g
  25. Sefardjella, H., Boudjema, B., Kabir, A., Schmerber, G. (2013). Structural and photoluminescence properties of SnO2 obtained by thermal oxidation of evaporated Sn thin films. Current Applied Physics, 13(9), 1971–1974. DOI: 10.1016/j.cap.2013.08.017
  26. Castrejón-Sánchez V.H., Solís A.C., López R., Encarnación-Gomez C., Morales F.M., VargasO. S., Sánchez G.V. (2019). Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO). Materials Research Express, 6, 075909. DOI: 10.1088/2053-1591/ab1662
  27. Nerle, U., Rabinal, M.K. (2013). Thermal Oxidation of Copper for Favorable Formation of Cupric Oxide (CuO) Semiconductor. IOSR Journal of Applied Physics, 5, 1-7. DOI: 10.9790/4861-0510107
  28. Raship, N.A., Sahdan, M.Z., Adriyanto, F., Nurfazliana, M.F., Bakri, A.S. (2017). Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique. AIP Conference Proceedings, 1788, 030121. DOI: 10.1063/1.4968374
  29. Choudhary, S., Sarma, J.V.N., Pande, S., Ababou-Girard, S., Turban, P., Lepine, B., Gangopadhyay, S. (2018). Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Advances, 8, 055114. DOI: 10.1063/1.5028407
  30. Catauro, M., Tranquillo, E., Dal Poggetto, G., Pasquali, M., Dell’Era, A., Ciprioti, S.V. (2018). Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method. Materials, 11(12), 2364. DOI: 10.3390/ma11122364
  31. Toe, M.Z., Pung, S.Y., Le, A.T., Yaccob, K.A., Matsuda, A., Tan, W.K., Han, S.S. (2021). Morphology and optical properties of ZnO nanorods coupled with metal oxides of various bandgaps by photo-oxidation. Journal of Luminescence, 229, 117649. DOI: 10.1016/j.jlumin.2020.117649
  32. Mousa, H.M., Alenezi, J.F., Mohamed, I.M.A., Yasin, A.S., Hashem, A.F.M., Abdal-hay, A. (2021). Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys and Compounds, 886, 161169. DOI: 10.1016/j.jallcom.2021.161169
  33. Chenthamarakshan, C.R., Rajeshwar, K. (2000). Photocatalytic reduction of divalent zinc and cadmium ions in aqueous TiO2 suspensions: An interfacial induced adsorption-reduction pathway mediated by formate ions. Electrochemistry Communications, 2, 527–530. DOI: 10.1016/S1388-2481(00)00078-3
  34. Chenthamarakshan, C.R., Yang, H., Ming, Y., Rajeshwar, K. (2000). Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions. Journal of Electroanalytical Chemistry, 494, 79–86. DOI: 10.1016/S0022-0728(00)00374-0
  35. Zhang, Q., Li, C. (2020). High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition. Nanomaterials, 10(5), 0911. DOI: 10.3390/nano10050911
  36. Shifu, C., Lei, C., Shen, G., Gengyu, C. (2005). The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powder Technology, 160(3), 198–202. DOI: 10.1016/j.powtec.2005.08.012
  37. Tahergorabi, M., Esrafili, A., Shirzad-Siboni, M., Kermani, M. (2020). Photodegradation of catechol in water over magnetically separable Fe3O4/TiO2 composite photocatalysts. International Journal of Environmental Analytical Chemistry, 102(16), 4575–4593. DOI: 10.1080/03067319.2020.1785441
  38. Carneiro, J.O., Samantilleke, A.P., Parpot, P., Fernandes, F., Pastor, M., Correia, A., Luís, E.A., Chivanga Barros, A.A., Teixeira, V. (2016). Visible light induced enhanced photocatalytic degradation of industrial effluents (Rhodamine B) in aqueous media using TiO2 nanoparticles. Journal of Nanomaterials, 2016, 4396175. DOI: 10.1155/2016/4396175
  39. Kaur, H., Kaur, R. (2014). Removal of Rhodamine-B dye from aqueous solution onto Pigeon Dropping: Adsorption, Kinetic, Equilibrium, and Thermodynamic Studies. Journal of Materials and Environmental Sciences, 5(6), 1830–1838
  40. Li, G., Gray, K.A. (2007). The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chemical Physics, 339(1–3), 173–187. DOI: 10.1016/j.chemphys.2007.05.023
  41. Bessekhouad, Y., Robert, D., Weber, J.V. (2005). Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 101(3–4), 315–321. DOI: 10.1016/j.cattod.2005.03.038
  42. Mohammadi, H., Ghorbani, M. (2018). Synthesis photocatalytic TiO2/ZnO nanocomposite and investigation through anatase, wurtzite and ZnTiO3 phases antibacterial behaviors. Journal of Nano Research, 51, 69–77. DOI: 10.4028/www.scientific.net/JNanoR.51.69
  43. Hou, L.R., Yuan, C.Z., Peng, Y. (2007). Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. Journal of Hazardous Materials, 139(2), 310–315. DOI: 10.1016/j.jhazmat.2006.06.035
  44. Campo, C.M., Rodríguez, J.E., Ramírez, A.E. (2016). Thermal behaviour of romarchite phase SnO in different atmospheres: a hypothesis about the phase transformation. Heliyon, 2(5), e00112. DOI: 10.1016/j.heliyon.2016.e00112

Last update:

No citation recorded.

Last update:

No citation recorded.