skip to main content

Advancements in the Exploration of Gel Electrolytes for Aqueous Zinc Ion Batteries

School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China

Received: 5 Aug 2023; Revised: 20 Sep 2023; Accepted: 21 Sep 2023; Available online: 27 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Aqueous zinc-ion batteries (ZIBs) are seen as a superior substitute for lithium-ion batteries (LIBs) due to their excellent safety, low cost, and eco-friendliness. However, problems such as zinc dendrite growth, hydrogen evolution reaction and electrode corrosion hinder the commercialization of batteries. Electrolyte as a link to other parts of the battery, has been widely concerned. Hydrogel is a kind of cross-linked product filled with water, which has the advantages of high theoretical capacity, good flexibility, good water retention and good mechanical properties, and becomes a potential candidate for ZIBs. By summarizing the development of hydrogel electrolytes, the cross-linking types of gel electrolytes and their applications in ZIBs were reviewed in this paper. Finally, the application of gel electrolyte in ZIBs is summarized and prospected, which brings a meaningful reference for the development of ZIBs. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Aqueous zinc ion battery; Gel electrolyte; Zinc dendrite; Corrosion
Funding: National Natural Science Foundation of China under contract No. 51902036; Natural Science Foundation of Chongqing Science & Technology Commission under contract Nos. CSTB2022NSCQ-MSX0828 and cstc2019jcyj-msxm1407; Key Science and Technology Research Program of Chongqing Education Commission under contract No. KJZD-K202200807; Venture & Innovation Support Program for Chongqing Overseas Returnees under contract No. CX2021043; Research Project of Innovative Talent Training Engineering Program of Chongqing Primary and Secondary School under contract CY230801

Article Metrics:

  1. Young, A., Lesmana, D., Dai, D.-J., Wu, H.-S. (2013). Short Review: Mitigation of Current. Environmental Concerns from Methanol Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 8(1), 1-13. doi: 10.9767/bcrec.8.1.4055.1-13
  2. Nuhma, M.J., Alias, H., Jazie, A.A., Tahir, M. (2021). Role of Microalgae as a Source for Biofuel Production in the Future: A Short Review. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 396-412. doi: 10.9767/bcrec.16.2.10503.396-412
  3. Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., Liu, J. (2011). Electrochemical Energy Storage for Green Grid. Chemical Reviews, 111(5), 3577-3613. doi: 10.1021/cr100290v
  4. Dunn, B., Kamath, H., Tarascon, J.M. (2011). Electrical energy storage for the grid: a battery of choices. Science, 334(6058), 928-935. doi: 10.1126/science.1212741
  5. Soloveichik, G.L. (2011). Battery technologies for large-scale stationary energy storage. The Annual Review of Chemical and Biomolecular Engineering, 2, 503-527.doi: 10.1146/annurev-chembioeng-061010-114116
  6. Xie, J., Lu, Y.C. (2020). A retrospective on lithium-ion batteries. Nature Communications, 11(1), 2499. doi: 10.1038/s41467-020-16259-9
  7. Kim, H., Hong, J., Park, K.Y., Kim, H., Kim, S.W., Kang, K. (2014). Aqueous rechargeable Li and Na ion batteries. Chemical Reviews, 114(23), 11788-11827. doi: 10.1021/cr500232y
  8. Fang, G., Zhou, J., Pan, A., Liang, S. (2018). Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 3(10), 2480-2501. doi: 10.1021/acsenergylett.8b01426
  9. Zhang, W., Liang, S., Fang, G., Yang, Y., Zhou, J. (2019). Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nanomicro Letters, 11(1), 69. doi: 10.1007/s40820-019-0300-2
  10. Wang, D., Gao, X., Chen, Y., Jin, L., Kuss, C., Bruce, P.G. (2018). Plating and stripping calcium in an organic electrolyte. Nature Materials, 17(1), 16-20. doi: 10.1038/nmat5036
  11. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y., Cheng, H. M. (2018). Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry, 10(6), 667-672. doi: 10.1038/s41557-018-0045-4
  12. Yoo, H.D., Liang, Y., Dong, H., Lin, J., Wang, H., Liu, Y., Ma, L., Wu, T., Li, Y., Ru, Q., Jing, Y., An, Q., Zhou, W., Guo, J., Lu, J., Pantelides, S.T., Qian, X., Yao, Y. (2017). Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nature Communications, 8(1), 339. doi: 10.1038/s41467-017-00431-9
  13. Sun, R., Pei, C., Sheng, J., Wang, D., Wu, L., Liu, S., An, Q., Mai, L. (2018). High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Materials, 12, 61-68. doi: 10.1016/j.ensm.2017.11.012
  14. Yang, H., Li, H., Li, J., Sun, Z., He, K., Cheng, H. M., Li, F. (2019). The Rechargeable Aluminum Battery: Opportunities and Challenges. Angewandte Chemie International Edition in English, 58(35), 11978-11996. doi: 10.1002/anie.201814031
  15. Zhang, E., Wang, B., Wang, J., Ding, H., Zhang, S., Duan, H., Yu, X., Lu, B. (2020). Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries. Chemical Engineering Journal, 389,124407. doi: 10.1016/j.cej.2020.124407
  16. Liu, Z., Huang, Y., Huang, Y., Yang, Q., Li, X., Huang, Z., Zhi, C. (2020). Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 49(1), 180-232. doi: 10.1039/c9cs00131j
  17. Zhao, Y., Zhu, Y., Zhang, X. (2019). Challenges and perspectives for manganese‐based oxides for advanced aqueous zinc‐ion batteries. InfoMat, 2(2), 237-260. doi: 10.1002/inf2.12042
  18. Han, M., Huang, J., Liang, S., Shan, L., Xie, X., Yi, Z., Wang, Y., Guo, S., Zhou, J. (2020). Oxygen Defects in beta-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. iScience, 23(1), 100797. doi: 10.1016/j.isci.2019.100797
  19. Zhu, Z., Jiang, T., Ali, M., Meng, Y., Jin, Y., Cui, Y., Chen, W. (2022). Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 122(22), 16610-16751. doi: 10.1021/acs.chemrev.2c00289
  20. Jia, X., Liu, C., Neale, Z.G., Yang, J., Cao, G. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. doi: 10.1021/acs.chemrev.9b00628
  21. Liu, Z., Liang, G., Zhan, Y., Li, H., Wang, Z., Ma, L., Wang, Y., Niu, X., Zhi, C. (2019). A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 58, 732-742. doi: 10.1016/j.nanoen.2019.01.087
  22. Sun, J.Y., Zhao, X., Illeperuma, W.R., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133-136. doi: 10.1038/nature11409
  23. Wang, J., Huang, Y., Liu, B., Li, Z., Zhang, J., Yang, G., Hiralal, P., Jin, S., Zhou, H. (2021). Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Materials, 41, 599-605. doi: 10.1016/j.ensm.2021.06.034
  24. Han, L., Liu, K., Wang, M., Wang, K., Fang, L., Chen, H., Zhou, J., Lu, X. (2018). Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance. Advanced Functional Materials, 28(3),1704195. doi: 10.1002/adfm.201704195
  25. Huang, Y., Li, Z., Pei, Z., Liu, Z., Li, H., Zhu, M., Fan, J., Dai, Q., Zhang, M., Dai, L., Zhi, C. (2018). Solid-State Rechargeable Zn//NiCo and Zn-Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. Advanced Energy Materials, 8(31),1802288. doi: 10.1002/aenm.201802288
  26. Taylor, D.L., In Het Panhuis, M. (2016). Self-Healing Hydrogels. Advanced Materials, 28(41), 9060-9093. doi: 10.1002/adma.201601613
  27. Peng, H., Lv, Y., Wei, G., Zhou, J., Gao, X., Sun, K., Ma, G., Lei, Z. (2019). A flexible and self-healing hydrogel electrolyte for smart supercapacitor. Journal of Power Sources, 431, 210-219. doi: 10.1016/j.jpowsour.2019.05.058
  28. Liu, C., Xie, X., Lu, B., Zhou, J., Liang, S. (2021) Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 6(3), 1015-1033. doi: 10.1021/acsenergylett.0c02684
  29. Wang, T., Li, C., Xie, X., Lu, B., He, Z., Liang, S., Zhou, J. (2020). Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 14(12), 16321-16347. doi: 10.1021/acsnano.0c07041
  30. Wang, F., Borodin, O., Gao, T., Fan, X., Sun, W., Han, F., Faraone, A., Dura, J.A., Xu, K., Wang, C. (2018). Highly reversible zinc metal anode for aqueous batteries. Nature Materials, 17(6), 543-549. doi: 10.1038/s41563-018-0063-z
  31. Zuo, Y., Wang, K., Pei, P., Wei, M., Liu, X., Xiao, Y., Zhang, P. (2021). Zinc dendrite growth and inhibition strategies. Materials Today Energy, 20,100692. doi: 10.1016/j.mtener.2021.100692
  32. Hao, J., Li, X., Zeng, X., Li, D., Mao, J., Guo, Z. (2020). Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy & Environmental Science, 13(11), 3917-3949. doi: 10.1039/d0ee02162h
  33. Si, Y., Xu, L., Wang, N., Zheng, J., Yang, R., Li, J. (2020). Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening. Analytical chemistry, 92(3), 2649-2655. doi: 10.1021/acs.analchem.9b04606
  34. Li, H., Ma, L., Han, C., Wang, Z., Liu, Z., Tang, Z., Zhi, C. (2019). Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 62, 550-587. doi: 10.1016/j.nanoen.2019.05.059
  35. Jabbari, V., Foroozan, T., Shahbazian-Yassar, R. (2021). Dendritic Zn Deposition in Zinc‐Metal Batteries and Mitigation Strategies. Advanced Energy and Sustainability Research, 2(4), 2000082. doi: 10.1002/aesr.202000082
  36. Ma, L., Zhi, C. (2021). Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochemistry Communications, 122, 106898. doi: 10.1016/j.elecom.2020.106898
  37. Fu, J., Cano, Z.P., Park, M.G., Yu, A., Fowler, M., Chen, Z. (2017). Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 29(7), 1604685. doi: 10.1002/adma.201604685
  38. Mainar, A.R., Iruin, E., Colmenares, L.C., Kvasha, A., de Meatza, I., Bengoechea, M., Leonet, O., Boyano, I., Zhang, Z., Blazquez, J. A. (2018). An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. Journal of Energy Storage, 15, 304-328. doi: 10.1016/j.est.2017.12.004
  39. Cheng, Y., Luo, L., Zhong, L., Chen, J., Li, B., Wang, W., Mao, S.X., Wang, C., Sprenkle, V. L., Li, G., Liu, J. (2016). Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 8(22), 13673-13677. doi: 10.1021/acsami.6b03197
  40. Powers, R. W., Breiter, M. W. (1969). The Anodic Dissolution and Passivation of Zinc in Concentrated Potassium Hydroxide Solutions. Journal of The Electrochemical Society, 116(6), 719-729. doi: 10.1149/1.2412040
  41. Liu, X., Wei, W., Wu, M., Liu, K., Li, S. (2019). Understanding the structure and dynamical properties of stretched water by molecular dynamics simulation. Molecular Physics, 117(23-24), 3852-3859. doi: 10.1080/00268976.2019.1669835
  42. Liu, Y., Liu, X., Duan, B., Yu, Z., Cheng, T., Yu, L., Liu, L., Liu, K. (2021). Polymer-Water Interaction Enabled Intelligent Moisture Regulation in Hydrogels. Journal of Physical Chemistry Letters, 12(10), 2587-2592. doi: 10.1021/acs.jpclett.1c00034
  43. Chen, Z., Hsu, P.-C., Lopez, J., Li, Y., To, J. W.F., Liu, N., Wang, C., Andrews, Sean C., Liu, J., Cui, Y., Bao, Z. (2016). Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 1(1), 15009. doi: 10.1038/nenergy.2015.9
  44. Yang, P., Yang, J. L., Liu, K., Fan, H. J. (2022). Hydrogels Enable Future Smart Batteries. ACS Nano, 16(10), 15528-15536. doi: 10.1021/acsnano.2c07468
  45. Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7(12), 3857-3886. doi: 10.1039/c4ee01432d
  46. Cheng, X., Pan, J., Zhao, Y., Liao, M., Peng, H. (2018). Gel Polymer Electrolytes for Electrochemical Energy Storage. Advanced Energy Materials, 8(7), 1702184. doi: 10.1002/aenm.201702184
  47. Huang, S., Zhu, J., Tian, J., Niu, Z. (2019). Recent Progress in the Electrolytes of Aqueous Zinc‐Ion Batteries. Chemistry – A European Journal, 25(64), 14480-14494. doi: 10.1002/chem.201902660
  48. Li, D., Cao, L., Deng, T., Liu, S., Wang, C. (2021). Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie International Edition in English, 60(23), 13035-13041. doi: 10.1002/anie.202103390
  49. Hu, F., Li, M., Gao, G., Fan, H., Ma, L. (2022). The Gel-State Electrolytes in Zinc-Ion Batteries. Batteries, 8(11), 100349. doi: 10.3390/batteries8110214
  50. Yu, P., Zeng, Y., Zhang, H., Yu, M., Tong, Y., Lu, X. (2019). Flexible Zn-Ion Batteries: Recent Progresses and Challenges. Small, 15(7), e1804760. doi: 10.1002/smll.201804760
  51. Huang, Y., Zhang, J., Liu, J., Li, Z., Jin, S., Li, Z., Zhang, S., Zhou, H. (2019). Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Materials Today Energy, 14, 100349. doi: 10.1016/j.mtener.2019.100349
  52. Sun, J., Zhang, Y., Liu, Y., Jiang, H., Dong, X., Hu, T., Meng, C. (2021). Hydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5⋅nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries. Journal of Colloid and Interface Science, 587, 845-854. doi: 10.1016/j.jcis.2020.10.148
  53. Yan, H., Zhang, X., Yang, Z., Xia, M., Xu, C., Liu, Y., Yu, H., Zhang, L., Shu, J. (2022). Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 452, 214297. doi: 10.1016/j.ccr.2021.214297
  54. Sun, P., Liu, W., Yang, D., Zhang, Y., Xiong, W., Li, S., Chen, J., Tian, J., Zhang, L. (2022). Stable Zn anodes enabled by high-modulus agarose gel electrolyte with confined water molecule mobility. Electrochimica Acta, 429,140985. doi: 10.1016/j.electacta.2022.140985
  55. Wang, B., Li, J., Hou, C., Zhang, Q., Li, Y., Wang, H. (2020). Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. ACS Applied Materials & Interfaces, 12(41), 46005-46014. doi: 10.1021/acsami.0c12313
  56. Wang, Z., Mo, F., Ma, L., Yang, Q., Liang, G., Liu, Z., Li, H., Li, N., Zhang, H., Zhi, C. (2018). Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO2 Battery and a Flexible Battery-Sensor System. ACS Applied Materials & Interfaces, 10(51), 44527-44534. doi: 10.1021/acsami.8b17607
  57. Zhang, J., Huang, Y., Li, Z., Gao, C., Jin, S., Zhang, S., Wang, X., Zhou, H. (2020). Polyacrylic acid assisted synthesis of free-standing MnO2/CNTs cathode for Zinc-ion batteries. Nanotechnology, 31(37), 375401. doi: 10.1088/1361-6528/ab9866
  58. Almenara, N., Gueret, R., Huertas-Alonso, A. J., Veettil, U. T., Sipponen, M. H., Lizundia, E. (2023). Lignin–Chitosan Gel Polymer Electrolytes for Stable Zn Electrodeposition. ACS Sustainable Chemistry & Engineering, 11(6), 2283-2294. doi: 10.1021/acssuschemeng.2c05835
  59. Ou, X., Liu, Q., Pan, J., Li, L., Hu, Y., Zhou, Y., Yan, F. (2022). CO2-sourced anti-freezing hydrogel electrolyte for sustainable Zn-ion batteries. Chemical Engineering Journal, 435, 135051. doi: 10.1016/j.cej.2022.135051
  60. Li, C., Xie, X., Liang, S., Zhou, J. (2020). Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries. Energy & Environmental Materials, 3(2), 146-159. doi: 10.1002/eem2.12067
  61. Abu Elella, M. H., Goda, E. S., Gab-Allah, M. A., Hong, S. E., Pandit, B., Lee, S., Gamal, H., Rehman, A. u., Yoon, K. R. (2021). Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering, 9(1), 104702. doi: 10.1016/j.jece.2020.104702
  62. Chen, Y., Zhao, J., Wang, Y. (2020). Quasi-Solid-State Zinc Ion Rechargeable Batteries for Subzero Temperature Applications. ACS Applied Energy Materials, 3(9), 9058-9065. doi: 10.1021/acsaem.0c01452
  63. Li, L., Liu, S., Liu, W., Ba, D., Liu, W., Gui, Q., Chen, Y., Hu, Z., Li, Y., Liu, J. (2021). Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries. Nanomicro Letters, 13(1), 34. doi: 10.1007/s40820-020-00554-7
  64. Zhang, Q., Li, C., Li, Q., Pan, Z., Sun, J., Zhou, Z., He, B., Man, P., Xie, L., Kang, L., Wang, X., Yang, J., Zhang, T., Shum, P. P., Li, Q., Yao, Y., Wei, L. (2019). Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 19(6), 4035-4042. doi: 10.1021/acs.nanolett.9b01403
  65. Hoang, T.K.A., Doan, T.N.L., Cho, J.H., Su, J. Y.J., Lee, C., Lu, C., Chen, P. (2017). Sustainable Gel Electrolyte Containing Pyrazole as Corrosion Inhibitor and Dendrite Suppressor for Aqueous Zn/LiMn2 O4 Battery. ChemSusChem, 10(13), 2816-2822. doi: 10.1002/cssc.201700441
  66. Lu, K., Jiang, T., Hu, H., Wu, M. (2020). Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries. Frontiers Chemistey, 8, 546728. doi: 10.3389/fchem.2020.546728
  67. Li, C., Wu, Q., Ma, J., Pan, H., Liu, Y., Lu, Y. (2022). Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 10(28), 14692-14708. doi: 10.1039/d2ta01672a
  68. Alipal, J., Mohd Pu'ad, N.A.S., Lee, T.C., Nayan, N.H.M., Sahari, N., Basri, H., Idris, M. I., Abdullah, H.Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240-250. doi: 10.1016/j.matpr.2020.12.922
  69. Han, Q., Chi, X., Zhang, S., Liu, Y., Zhou, B., Yang, J., Liu, Y. (2018). Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. Journal of Materials Chemistry A, 6(45), 23046-23054. doi: 10.1039/c8ta08314b
  70. Gaaz, T.S., Sulong, A.B., Akhtar, M.N., Kadhum, A.A., Mohamad, A.B., Al-Amiery, A.A. (2015). Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules, 20(12), 22833-22847. doi: 10.3390/molecules201219884
  71. Huang, S., Wan, F., Bi, S., Zhu, J., Niu, Z., Chen, J. (2019). A Self-Healing Integrated All-in-One Zinc-Ion Battery. Angewandte Chemie International Edition in English, 58 (13), 4313-4317. doi: 10.1002/anie.201814653
  72. Zhou, W., Chen, J., Chen, M., Wang, A., Huang, A., Xu, X., Xu, J., Wong, C.-P. (2020). An environmentally adaptive quasi-solid-state zinc-ion battery based on magnesium vanadate hydrate with commercial-level mass loading and anti-freezing gel electrolyte. Journal of Materials Chemistry A, 8(17), 8397-8409. doi: 10.1039/d0ta01033b
  73. Wang, R., Yao, M., Huang, S., Tian, J., Niu, Z. (2022). An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries. Science China Materials, 65(8), 2189-2196. doi: 10.1007/s40843-021-1924-2
  74. Tang, Y., Liu, C., Zhu, H., Xie, X., Gao, J., Deng, C., Han, M., Liang, S., Zhou, J. (2020). Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 27, 109-116. doi: 10.1016/j.ensm.2020.01.023
  75. Huang, S., Hou, L., Li, T., Jiao, Y., Wu, P. (2022). Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries. Advanced Materials, 34(14), e2110140. doi: 10.1002/adma.202110140
  76. Chen, M., Zhou, W., Wang, A., Huang, A., Chen, J., Xu, J., Wong, C.-P. (2020). Anti-freezing flexible aqueous Zn–MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 8(14), 6828-6841. doi: 10.1039/d0ta01553a
  77. Wu, K., Huang, J., Yi, J., Liu, X., Liu, Y., Wang, Y., Zhang, J., Xia, Y. (2020). Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 10(12). doi: 10.1002/aenm.201903977
  78. Peppas, N. A., Hoffman, A. S. (2020). Hydrogels. In Biomaterials Science , 153-166. doi: 10.1016/B978-0-12-816137-1.00014-3
  79. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. doi: 10.1016/j.addr.2012.09.010
  80. Ullah, F., Othman, M. B., Javed, F., Ahmad, Z., Md Akil, H. (2015). Classification, processing and application of hydrogels: A review. Materials Science & Engineering C- Materials for Biologocal Applications, 57, 414-433. doi: 10.1016/j.msec.2015.07.053
  81. Guo, Y., Bae, J., Zhao, F., Yu, G. (2019). Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 1(3), 335-348. doi: 10.1016/j.trechm.2019.03.005
  82. Yang, J. L., Li, J., Zhao, J. W., Liu, K., Yang, P., Fan, H.J. (2022). Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 34(27), e2202382. doi: 10.1002/adma.202202382
  83. Hao, Y., Feng, D., Hou, L., Li, T., Jiao, Y., Wu, P. (2022). Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode. Advanced Science (Weinh), 9(7), e2104832. doi: 10.1002/advs.202104832
  84. Lin, X., Zhou, G., Liu, J., Robson, M.J., Yu, J., Wang, Y., Zhang, Z., Kwok, S.C.T., Ciucci, F. (2021). Bifunctional Hydrated Gel Electrolyte for Long‐Cycling Zn‐Ion Battery with NASICON‐Type Cathode. Advanced Functional Materials, 31(42), 2105717. doi: 10.1002/adfm.202105717
  85. Chen, S., Sun, P., Humphreys, J., Zou, P., Zhang, M., Jeerh, G., Tao, S. (2021). Acetate-based ‘oversaturated gel electrolyte’ enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Materials, 42, 240-251. doi: 10.1016/j.ensm.2021.07.033
  86. Qiu, M., Liu, H., Tawiah, B., Jia, H., Fu, S. (2021). Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries. Composites Communications, 28, 100942. doi: 10.1016/j.coco.2021.100942
  87. Chen, M., Chen, J., Zhou, W., Han, X., Yao, Y., Wong, C.P. (2021). Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries. Advanced Materials, 33(9), e2007559. doi: 10.1002/adma.202007559
  88. Shao, Y., Zhao, J., Hu, W., Xia, Z., Luo, J., Zhou, Y., Zhang, L., Yang, X., Ma, N., Yang, D., Shi, Q., Sun, J., Zhang, L., Hui, J., Shao, Y. (2022). Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries. Small, 18(10), e2107163. doi: 10.1002/smll.202107163
  89. Yang, Y., Huang, C., Li, H., Teng, Z., Zhang, H., Wei, X., Zhang, H., Wu, L., Zhang, C., Chen, W. (2023). Study of a novel supramolecular hydrogel electrolyte for aqueous zinc ion batteries. Journal of Materials Chemistry C, 11(28), 9559-9569. doi: 10.1039/d3tc01284k
  90. Zheng, H., Huang, Y., Zhao, L., Li, X., Liu, J., Li, C., Chen, J., Xu, X., Li, X., Wang, M., Lin, Y. (2022). Eco-Friendly Lignocellulosic Gel Polymer Electrolyte for Aqueous Zinc Energy Storage Devices. ACS Sustainable Chemistry & Engineering, 10(38), 12751-12762. doi: 10.1021/acssuschemeng.2c03653
  91. Wang, H., Liu, J., Ahmed, S., Wang, T., Song, S. (2022). Freeze-tolerant gel electrolyte membrane for flexible Zn-ion hybrid supercapacitor. Journal of Energy Storage, 56, 105923. doi: 10.1016/j.est.2022.105923
  92. Wang, X., Wang, B., Cheng, J. (2023). Multi‐Healable, Mechanically Durable Double Cross‐Linked Polyacrylamide Electrolyte Incorporating Hydrophobic Interactions for Dendrite‐Free Flexible Zinc‐Ion Batteries. Advanced Functional Materials, 2304470. doi: 10.1002/adfm.202304470
  93. Yi, R., Shi, X., Tang, Y., Yang, Y., Zhou, P., Lu, B., Zhou, J. (2023). Carboxymethyl Chitosan‐Modified Zinc Anode for High‐Performance Zinc–Iodine Battery with Narrow Operating Voltage. Small Structures, 2300020. doi: 10.1002/sstr.202300020
  94. Huang, S., Zhu, J., Tian, J., Niu, Z. (2019). Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Chemistry, 25(64), 14480-14494. doi: 10.1002/chem.201902660
  95. Wang, R., Yao, M., Huang, S., Tian, J., Niu, Z. (2021). Sustainable Dough‐Based Gel Electrolytes for Aqueous Energy Storage Devices. Advanced Functional Materials, 31(14), 2009209. doi: 10.1002/adfm.202009209

Last update:

No citation recorded.

Last update:

No citation recorded.