skip to main content

Hydrazine-Fueled Solution Combustion Method: Fuel/Oxidizer Ratio Effects on Photocatalytic Performance of Bismuth Oxide

1Chemistry Department, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang, Semarang 50275, Indonesia

2Physics Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126, Indonesia

Received: 16 Aug 2023; Revised: 7 Oct 2023; Accepted: 8 Oct 2023; Available online: 10 Oct 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bismuth oxide nanoparticles were synthesized through the solution combustion method with a variation of fuel: oxidizer (hydrazine: bismuth nitrate) ratios (ϕ) of ϕ<1, ϕ=1 (stoichiometrically balanced) and ϕ> 1. Bismuth oxide nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS). The FTIR spectra obtained implies that the bismuth oxide nanoparticles of the three ratios contain Bi-O-Bi and Bi-O groups indicating its successful formation. XRD diffractogram suggests that the synthesized bismuth oxide nanoparticles form the α-Bi2O3 crystalline phase for ϕ<1 and ϕ>1; meanwhile a mixture of α-/β- Bi2O3 phases for ϕ=1. The SEM image illustrates that bismuth oxide nanoparticles form pebble shapes with the ratios in the order of increasing particle sizes of ϕ>1, ϕ=1, and ϕ<1. The UV-DRS results show that the bismuth oxide with ϕ<1, ϕ=1, and ϕ>1 have respective band gap energies of 2.76 eV, 2.72 eV, and 2.78 eV. The evaluation of the photocatalytic activity of the three bismuth oxide samples shows bismuth oxide with ϕ=1 has the highest photocatalytic activity in remazol black B and methyl orange dyes with rate constants 6.744 x 10-5 s-1 and 7.369 x 10-5 s-1, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Bismuth oxide; Solution Combustion; Fuel-oxidizer ratio; Photocatalyst
Funding: Universitas Diponegoro for Riset Kolaborasi Indonesia (RKI)no. 432-06/UN7.D2/PP/VI/2022

Article Metrics:

  1. Jiang, S., Wang, L., Hao, W., Li, W., Xin, H., Wang, W., Wang, T. (2015). Visible-Light Photocatalytic Activity of S-Doped α-Bi2O3. Journal of Physical Chemistry C, 119(25), 14094–14101. DOI: 10.1021/jp5117036
  2. M. Mallahi, A. Shokuhfar, M. R. Vaezi, A. Esmaeilirad, V. Mazinani. (2014). Synthesis and characterization of Bismuth oxide nanoparticles via sol-gel. American Journal of Engineering Research (AJER), 03, 162–165. www.ajer.org
  3. Schmidt, S., Kubaski, E.T., Volanti, D.P., Sequinel, T., Bezzon, V.D.N., Beltrán, A., Tebcherani, S.M., Varela, J.A. (2015). Effect of Pressure-Assisted Heat Treatment on Photoluminescence Emission of α-Bi2O3 Needles. Inorganic Chemistry, 54(21), 10184–10191. DOI: 10.1021/acs.inorgchem.5b01237
  4. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conference Series: Materials Science and Engineering, 107(1). DOI: 10.1088/1757-899X/107/1/012006
  5. Carlos, E., Martins, R., Fortunato, E., Branquinho, R. (2020). Solution combustion synthesis: towards a sustainable approach for metal oxides. Chemistry–A European Journal, 26(42), 9099–9125. DOI: 10.1002/chem.202000678
  6. Deganello, F., Tyagi, A.K. (2018). Solution combustion synthesis, energy and environment: Best parameters for better materials. In Progress in Crystal Growth and Characterization of Materials, 64(2), 23–61. DOI: 10.1016/j.pcrysgrow.2018.03.00
  7. Astuti, Y., Listyani, B.M., Suyati, L., Darmawan, A. (2021). Bismuth oxide prepared by sol-gel method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indonesian Journal of Chemistry, 21(1), 108–117. DOI: 10.22146/ijc.53144
  8. Ascencio Aguirre, F.M., Herrera Becerra, R. (2015). New synthesis of bismuth oxide nanoparticles Bi2O3 assisted by tannic acid. Applied Physics A: Materials Science and Processing, 119(3), 909–915. DOI: 10.1007/s00339-015-9039-x
  9. Marks, M., Jeppesen, H.S., Lock, N. (2022) Tuneable phase, morphology, and performance of bismuth oxyhalide photocatalysts via microwave-assisted synthesis. ACS Appl. Mater. Interfaces, 14(20), 23496–23506. DOI: 10.1021/acsami.2c03837
  10. Astuti, Y., Latifah, A., Arnelli., Suseno, A., Lestariningsih, T. (2023) Bismuth sulfide/coconut fiber based-activated carbon composite: synthesis, characterization, and electrochemical performance. Emergent Mater., 1–13. DOI: 10.1007/s42247-023-00529-5
  11. Astuti, Y., Mei, R., Darmawan, A., Arnelli, A., Widiyandari, H. (2022) Enhancement of electrical conductivity of bismuth oxide/activated carbon composite. Scientia Iranica, 29(6), 3119–3131. DOI: 10.24200/SCI.2022.57674.5359
  12. Astuti, Y., Farihah, D.N., Ekaningsih, A.Z., Darmawan, A. (2023). Electrochemical performance of one-pot hydrothermal-derived bismuth oxide/commercial activated carbon/graphite composite. Materials Science and Technology, 1–14. DOI: 10.1080/02670836.2023.2184574
  13. Astuti, Y., Hartinah, S., Darmawan, A., Widiyandari H. (2022). Synthesis and characterization of bismuth oxide/commercial activated carbon composite for battery anode. Open Chem, 20(1), 1476–1484. DOI: 10.1515/chem-2022-0247
  14. Astuti, Y., Musthafa, F., Arnelli, A., Nurhasanah, I. (2022). French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 146–156. DOI: 10.9767/BCREC.17.1.12554.146-156
  15. Gujar, T.P., Shinde, V.R., Lokhande, C.D., Mane, R.S., Han, S.-H. (2005). Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect, Appl. Surf. Sci., 250(1–4), 161–167. DOI: 10.1016/j.apsusc.2004.12.050
  16. Ambare, R.C., Shinde, P., Nakate, U.T., Lokhande, B.J., Mane, R.S. (2018). Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Appl. Surf. Sci., 453, 214–219. DOI: 10.1016/j.apsusc.2018.05.090
  17. Demir, E., Soytas, S.H., Demir-Cakan, R. (2019). Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries. Solid State Ion, 342, 115066. DOI: 10.1016/j.ssi.2019.115066
  18. Puttaraju, T.D., Shashank, M., Naika, H.R., Nagaraju, G., Manjunatha, M. (2022). Synthesis of bismuth oxychloride nanoparticles via co-precipitation method: Evaluation of photocatalytic activity. Mater. Today Proc., 62, 5533–5539. DOI: 10.1016/j.matpr.2022.04.333
  19. Kiran, V.S., Sumathi, S. (2017). Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. Journal of Magnetism and Magnetic Materials, 421, 113–119. DOI: 10.1016/j.jmmm.2016.07.068
  20. Alves, A.K., Bergmann, C.P., Berutti, F.A. (2013). Novel synthesis and characterization of nanostructured materials. Springerlink, DOI: 10.1007/978-3-642-41275-2
  21. Kang, W., Ozgur, D.O., Varma, A. (2018). Solution combustion synthesis of high surface area CeO2 nanopowders for catalytic applications: reaction mechanism and properties. ACS Appl. Nano Mater., 1(2), 675–685. DOI: 10.1021/acsanm.7b00154
  22. Toniolo, J., Takimi, A.S., Andrade, M.J., Bonadiman, R., Bergmann, C.P. (2007). Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles. Journal of Materials Science, 42(13), 4785–4791. DOI: 10.1007/s10853-006-0763-7
  23. Kang, W., Guo, H., Varma, A. (2019). Noble-metal-free NiCu/CeO2 catalysts for H2 generation from hydrous hydrazine. Appl. Catal. B, 249, 54–62 DOI: 10.1016/j.apcatb.2019.02.066
  24. Astuti, Y., Elesta, P.P., Widodo, D.S., Widiyandari, H., Balgis, R. (2020). Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: Characterization of physicochemical properties and photocatalytic activity. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 104–111. DOI: 10.9767/bcrec.15.1.5483.104-111
  25. Jadhav, L.D., Patil, S.P., Jamale, A.P., Chavan, A.U. (2013) Solution combustion synthesis: Role of oxidant to fuel ratio on powder properties. Materials Science Forum, 85–98. DOI: 10.4028/www.scientific.net/MSF.757.85
  26. Deshpande, K., Mukasyan, A., Varma, A. (2004). Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chemistry of materials, 16(24), 4896–4904. DOI: 10.1021/cm040061m
  27. Bandyopadhyay, S., Dutta, A. (2017). Thermal, optical and dielectric properties of phase stabilized δ – Dy-Bi2O3 ionic conductors. Journal of Physics and Chemistry of Solids, 102, 12–20. DOI: 10.1016/j.jpcs.2016.11.001
  28. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. DOI: 10.17509/ijost.v4i1.15806
  29. Chuang, C.C., Shiu, J.S., Lin, J.L. (2000). Interaction of hydrazine and ammonia with TiO2. Physical Chemistry Chemical Physics, 2(11), 2629–2633. DOI: 10.1039/B001389G
  30. Greever, J.C. (1995). Organic Chemistry. ACS Publications, 1995
  31. Malmros, G. (1970). The crystal structure of a-Bi2O3. Acta Chem. Scand., 24(2), 384
  32. Ebraheem, S., El-Saied, A. (2013). Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. DOI: 10.4236/msa.2013.45042

Last update:

No citation recorded.

Last update:

No citation recorded.