skip to main content

Organic Wastewater Treatment using Two-dimensional Graphene-based Photocatalysts: A Review

1School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

2Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, 65145, Indonesia

4 School of Engineering, Asia Pacific University of Technology and Innovation, Jalan Teknologi 5, Taman Teknologi Malaysia, 57000 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia

5 College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China

View all affiliations
Received: 31 Aug 2023; Revised: 16 Sep 2023; Accepted: 18 Sep 2023; Available online: 21 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Photocatalysts have gained enormous attention in water decontamination due to their economic viable and intriguing properties. Recently, graphene-based semiconductors have become the sparkling star on the horizon of material science. The coupling of two-dimensional graphene and its derivatives (graphene oxide and reduced graphene oxide) with semiconductors could effectively enhance the efficiency in organic wastewater degradation under light irradiation. Hence, a collective study on this topic is necessary.  Four types of graphene-based semiconductors, viz. titania, zinc oxide, cadmium sulfide, and bismuth oxychloride, are explored. Besides, synthesis approaches and properties of these photocatalysts are elucidated too. We hope this review could enable us to rationally design and harness the morphology, structure and electronic properties of these advanced materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Organic pollutants; Wastewater treatment; 2D graphene-based photocatalysts; Photodegradation; Graphene oxide; reduced Graphene Oxide
Funding: Xiamen University Malaysia Research Fund under contract XMUMRF/2019-C4/IENG/0019; Xiamen University Malaysia Research Fund under contract XMUMRF/2020-C5/IENG/0029; Hengyuan International Sdn. Bhd. under contract EENG/0003

Article Metrics:

  1. Duan, X., Ren, D., Wang, S., Zhang, M., Sun, Y., Sun, S., Huo, Z., Zhang, N. (2023). Carbon materials in electrocatalytic oxidation systems for the treatment of organic pollutants in wastewater: A review. Carbon Resources Conversion, 6(4), 262–273. DOI: 10.1016/j.crcon.2023.03.006
  2. Hu, Z., Hao, L., Quan, F., Guo, R. (2022). Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal. Sci. Technol., 12,436–461. DOI: 10.1039/D1CY01688A
  3. Masekela, D., Hintsho-Mbita, N.C., Sam, S., Yusuf, T.L., Mabuba, N. (2023). Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review. Arabian Journal of Chemistry, 16. DOI: 10.1016/j.arabjc.2022.104473
  4. Sewnet, A., Abebe, M., Asaithambi, P., Alemayehu, E. (2022). Visible-Light-Driven g-C3N4/TiO2 Based Heterojunction Nanocomposites for Photocatalytic Degradation of Organic Dyes in Wastewater: A Review. Air, Soil and Water Research, 15. DOI: 10.1177/117862212211172
  5. Ramalingam, G., Perumal, N., Priya, A.K., Rajendran, S. (2022). A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere, 300 DOI: 10.1016/j.chemosphere.2022.134391
  6. Kumar, S., Himanshi, Prakash, J., Verma, A., Suman, Jasrotia, R., Kandwal, A., Verma, R., Godara, S.K., Khan, M.A.M., Alshehri, S.M., Ahmed, J. (2023). A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts, 13(1), 111. DOI: 10.3390/catal13010111
  7. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. DOI: 10.1002/adma.201001068
  8. Chowdhury, S., Balasubramanian, R. (2014). Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Applied Catalysis B: Environmental, 160–161, 307–324. DOI: 10.1016/j.apcatb.2014.05.035
  9. Ganguly, P., Harb, M., Cao, Z., Cavallo, L., Breen, A., Dervin, S., Dionysiou, D.D., Pillai, S.C. (2019). 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 4(7), 1687–1709. DOI: 10.1021/acsenergylett.9b00940
  10. Geim, A.K., Novoselov, K.S. (2007). The rise of gra-phene. Nature Materials, 6, 183–191. DOI: 10.1038/nmat1849
  11. Zhang, N., Zhang, Y., Xu, Y.J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792–5813. DOI: 10.1039/C2NR31480K
  12. Ito, J., Nakamura, J., Natori, A. (2008). Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 103(11), 113712. DOI: 10.1063/1.2939270
  13. Matsumoto, Y., Koinuma, M., Ida, S., Hayami, S., Taniguchi, T., Hatakeyama, K., Tateishi, H., Watanabe, Y., Amano, S. (2011). Photoreaction of graphene oxide nanosheets in water. Journal of Physical Chemistry C, 115(39), 19280–19286. DOI: 10.1021/jp206348s
  14. Samriti, Manisha, Chen, Z., Sun, S., Prakash, J. (2022). Design and engineering of grapheme nanostructures as independent solar-driven photocatalysts for emerging applications in the field of energy and environment. Mol. Syst. Des. Eng. 7, 213–238. DOI: 10.1039/D1ME00179E
  15. Siong, V.L.E., Tai, X.H., Lee, K.M., Juan, J.C., Lai, C.W. (2020). Unveiling the enhanced photoelectrochemical and photocatalytic properties of reduced graphene oxide for photodegradation of methylene blue dye. RSC Advances, 10(62), 37905–37915. DOI: 10.1039/D0RA06703B
  16. Siong, V.L.E., Tai, X.H., Lee, K.M., Juan, J.C., Lai, C.W. (2020). Unveiling the enhanced photoelectrochemical and photocatalytic properties of reduced graphene oxide for photodegradation of methylene blue dye. RSC Advances, 10(62), 37905–37915. DOI: 10.1039/d0ra06703b
  17. Siong, V.L.E., Lee, K.M., Juan, J.C., Lai, C.W., Tai, X.H., Khe, C.S. (2019). Removal of methylene blue dye by solvothermally reduced graphene oxide: A metal-free adsorption and photodegradation method. RSC Advances, 9(64), 37686–37695. DOI: 10.1039/c9ra05793e
  18. Krishnamoorthy, K., Mohan, R., Kim, S.J. (2011). Graphene oxide as a photocatalytic material. Applied Physics Letters, 98(24) DOI: 10.1063/1.3599453
  19. Trinh, D.N., Viet, T.Q.Q., Nhu, T.H., Dat, N.M., Thinh, D.B., Hai, N.D., Tai, L.T., Oanh, D.T.Y., Khoi, V.H., Nam, H.M., Phong, M.T., Hieu, N.H. (2021). Binary TiO2/reduced graphene oxide nanocomposite for improving methylene blue photodegradation. Vietnam Journal of Chemistry, 59(3), 395–404. DOI: 10.1002/vjch.202100009
  20. Mohan, H., Ramalingam, V., Karthi, N., Malathidevi, S., Shin, T., Venkatachalam, J., Seralathan, K.K. (2021). Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity. Chemosphere, 264 DOI: 10.1016/j.chemosphere.2020.128481
  21. Wang, C.Y., Wu, T., Lin, Y.W. (2019). Preparation and characterization of bismuth oxychloride/reduced graphene oxide for photocatalytic degradation of rhodamine B under white-light light-emitting-diode and sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 371, 355–364. DOI: 10.1016/j.jphotochem.2018.11.043
  22. Shen, J.H., Li, M.M., Chu, L.F., Guo, C.X., Guo, Y.J., Guo, Y.P. (2021). Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation. Journal of Colloid and Interface Science, 586, 563–575. DOI: 10.1016/j.jcis.2020.10.121
  23. Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., Jiao, Q. (2017). Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253, 113–120. DOI: 10.1016/J.JSSC.2017.05.034
  24. Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., Zyryanov, G. v. (2020). An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826. DOI: 10.1016/j.molliq.2019.111826
  25. Tayel, A., Ramadan, A.R., el Seoud, O.A. (2018). Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts, 8 (11), 491. DOI: 10.3390/catal8110491
  26. Chen, X., Mao, S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 107 (7), 2891–2959. DOI: 10.1021/cr0500535
  27. Fundamentals and Applications of Nanomaterials - Zhen Guo, Li Tan - Google Books. https://books.google.com.my/books?hl=en&lr=&id=TEqEz0hKJOQC&oi=fnd&pg=PR3&ots=jnl6GE4Mh5&sig=DEraBcsLRRZeFHlPPVVtdyJsl74&redir_esc=y#v=onepage&q&f=false. Accessed 20 May 2022
  28. The Chemistry of Nanomaterials: Synthesis, Properties and Applications - Google Books. https://books.google.com.my/books?hl=en&lr=&id=XjB43Kt-HXYC&oi=fnd&pg=PR5&ots=enKdRfVFrA&sig=0y_u_D0e9NHXXtLQ_uc0AqvD1Ig&redir_esc=y#v=onepage&q&f=false. Accessed 20 May 2022
  29. Handbook of Hydrothermal Technology - K. Byrappa, Masahiro Yoshimura - Google Books. https://books.google.com.my/books?hl=en&lr=&id=vA5tXzLsHioC&oi=fnd&pg=PP1&ots=cypd3Sonhk&sig=C-neu2r-Bu3AArQELfrBBq9a6zM&redir_esc=y#v=onepage&q&f=false. Accessed 20 May 2022
  30. Tong, Z., Yang, D., Shi, J., Nan, Y., Sun, Y., Jiang, Z. (2015). Three-Dimensional Porous Aerogel Constructed by g-C3N4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Applied Materials and Interfaces, 7(46), 25693–25701. DOI: 10.1021/acsami.5b09503
  31. Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., Jiao, Q. (2017). Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253, 113–120. DOI: 10.1016/j.jssc.2017.05.034
  32. Bie, C., Yu, H., Cheng, B., Ho, W., Fan, J., Yu, J. (2021). Design, Fabrication, and Mechanism of Nitrogen-Doped Graphene-Based Photocatalyst. Advanced Materials, 33(9), 2003521. DOI: 10.1002/adma.202003521
  33. Wu, M.H., Li, L., Xue, Y.C., Xu, G., Tang, L., Liu, N., Huang, W.Y. (2018). Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Applied Catalysis B: Environmental, 228, 103–112. DOI: 10.1016/j.apcatb.2018.01.063
  34. Wang, C., Cao, M., Wang, P., Ao, Y., Hou, J., Qian, J. (2014). Preparation of graphene–carbon nanotube–TiO2 composites with enhanced photocatalytic activity for the removal of dye and Cr(VI). Applied Catalysis A: General, 473, 83–89. DOI: 10.1016/j.apcata.2013.12.028
  35. Bajaj, N.S., Joshi, R.A. (2021). Energy materials: synthesis and characterization techniques. Energy Materials: Fundamentals to Applications, Chapter 3, 61–82. DOI: 10.1016/B978-0-12-823710-6.00019-4
  36. Thambidurai, S., Gowthaman, P., Venkatachalam, M., Suresh, S. (2020). Natural sunlight assisted photocatalytic degradation of methylene blue by spherical zinc oxide nanoparticles prepared by facile chemical co-precipitation method. Optik, 207, 163865. DOI: 10.1016/j.ijleo.2019.163865
  37. Zhou, Y., Li, J., Liu, C., Huo, P., Wang, H. (2018). Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Applied Surface Science, 458, 586–596. DOI: 10.1016/j.apsusc.2018.07.121
  38. Hench, L.L., West, J.K. (1990). The Sol-Gel Process. Chemical Reviews, 90(1), 33–72. DOI: 10.1021/cr00099a003
  39. Xu, D., Li, L., He, R., Qi, L., Zhang, L., Cheng, B. (2018). Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Applied Surface Science, 434, 620–625. DOI: 10.1016/j.apsusc.2017.10.192
  40. Štengl, V., Bakardjieva, S., Grygar, T.M., Bludská, J., Kormunda, M. (2013). TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chemistry Central Journal, 7(1), 1–12. DOI: 10.1186/1752-153X-7-41
  41. Park, C.Y., Kefayat, U., Vikram, N., Ghosh, T., Oh, W.C., Cho, K.Y. (2013). Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light. Bulletin of Materials Science 2013 36:5, 36(5), 869–876. DOI: 10.1007/S12034-013-0533-5
  42. Tang, B., Chen, H., Peng, H., Wang, Z., Huang, W. (2018). Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective. Nanomaterials, 8(2), 105. DOI: 10.3390/nano8020105
  43. Faraldos, M., Bahamonde, A. (2017). Environmental applications of titania-graphene photocatalysts. Catalysis Today, 285, 13–28. DOI: 10.1016/j.cattod.2017.01.029
  44. Karthik, V., Selvakumar, P., Senthil Kumar, P., Vo, D.V.N., Gokulakrishnan, M., Keerthana, P., Tamil Elakkiya, V., Rajeswari, R. (2021). Graphene-based materials for environmental applications: a review. Environmental Chemistry Letters, 19(5), 3631–3644. DOI: 10.1007/S10311-021-01262-3
  45. Dutta, V., Singh, P., Shandilya, P., Sharma, S., Raizada, P., Saini, A.K., Gupta, V.K., Hosseini-Bandegharaei, A., Agarwal, S., Rahmani-Sani, A. (2019). Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 7(3), 103132. DOI: 10.1016/j.jece.2019.103132
  46. Zhao, G., Li, X., Huang, M., Zhen, Z., Zhong, Y., Chen, Q., Zhao, X., He, Y., Hu, R., Yang, T., Zhang, R., Li, C., Kong, J., Xu, J. bin, Ruoff, R.S., Zhu, H. (2017). The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 46 (15), 4417–4449. DOI: 10.1039/C7CS00256D
  47. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725
  48. Chen, L., He, J., Liu, Y., Chen, P., Au, C.T., Yin, S.F. (2016). Recent advances in bismuth-containing photocatalysts with heterojunctions. Chinese Journal of Catalysis, 37(6), 780–791. DOI: 10.1016/S1872-2067(15)61061-0
  49. Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A.A. (2017). Heterojunction Photocatalysts. Advanced Materials, 29(20), 1601694. DOI: 10.1002/adma.201601694
  50. Li, X., Shen, R., Ma, S., Chen, X., Xie, J. (2018). Graphene-based heterojunction photocatalysts. Applied Surface Science, 430, 53–107. DOI: 10.1016/j.apsusuc.2017.08.194
  51. Zhang, W., Guo, H., Sun, H., Zeng, R. (2017). Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection. Applied Surface Science, 410, 547–556. DOI: 10.1016/j.apsusc.2017.03.133
  52. Miao, J., Xie, A., Li, S., Huang, F., Cao, J., Shen, Y. (2016). A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Applied Surface Science, 360, 594–600. DOI: 10.1016/j.apsusc.2015.11.005
  53. Tang, B., Chen, H., He, Y., Wang, Z., Zhang, J., Wang, J. (2017). Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Composites Science and Technology, 150, 54–64. DOI: 10.1016/j.compscitech.2017.07.007
  54. Sun, Y., Wang, X., Tang, B., Ban, J., He, Y., Huang, W., Tao, C., Luo, H., Sun, J. (2017). Three-dimensional graphene networks modified photocatalyst with high performance under visible-light irradiation. Materials Letters, 189, 54–57. DOI: 10.1016/j.matlet.2016.06.113
  55. Kaplan, R., Erjavec, B., Dražić, G., Grdadolnik, J., Pintar, A. (2016). Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Applied Catalysis B: Environmental, 181, 465–474. DOI: 10.1016/j.apcatb.2015.08.027
  56. Xiong, Z, Lei, Z., Li, Y., Dong, L., Zhao, Y., Zhang, J. (2018). A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 36, 24-47. DOI: 10.1016/j.jphotochemrev.2018.07.002
  57. Kavitha, M.K., Gopinath, P., John, H. (2015). Reduced graphene oxide–ZnO self-assembled films: tailoring the visible light photoconductivity by the intrinsic defect states in ZnO. Physical Chemistry Chemical Physics, 17(22), 14647–14655. DOI: 10.1039/C5CP01318F
  58. Sharma, M., Behl, K., Nigam, S., Joshi, M. (2018). TiO2-GO nanocomposite for photocatalysis and environmental applications: A green synthesis approach. Vacuum, 156, 434–439. DOI: 10.1016/j.vacuum.2018.08.009
  59. Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386. DOI: 10.1021/nn901221k
  60. Bukhari, K., Ahmad, N., Sheikh, I.A., Akram, T.M. (2019). Effects of Different Parameters on Photocatalytic Oxidation of Slaughterhouse Wastewater Using TiO2 and Silver-Doped TiO2 Nanoparticles. Polish Journal of Environmental Studies, 28(3), 1591–1600. DOI: 10.15244/pjoes/90635
  61. Rozman, N., Tobaldi, D.M., Cvelbar, U., Puliyalil, H., Labrincha, J.A., Legat, A., Škapin, A.S. (2019). Hydrothermal Synthesis of Rare-Earth Modified Titania: Influence on Phase Composition, Optical Properties, and Photocatalytic Activity. Materials 2019, Vol 12, Page 713, 12(5), 713. DOI: 10.3390/MA12050713
  62. Gohr, M.S., Hafez, H.S., Saif, M.M., Soliman, H.M.A., Abdel-Mottaleb, M.S.A. (2020). Facile Hydrothermal Synthesis of Sm and Eu doped TiO2/Graphene Oxide Nanocomposites for Photocatalytic Applications. Egyptian Journal of Chemistry, 63(4), 1359–1382. DOI: 10.21608/ejchem.2019.15112.1914
  63. Sakthivel, S., Shankar, M. v., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001–3008. DOI: 10.1016/j.watres.2004.04.046
  64. Umebayashi, T., Yamaki, T., Itoh, H., Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454. DOI: 10.1063/1.1493647
  65. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269–271. DOI: 10.1126/science.1061051
  66. Shang, X., Zhang, M., Wang, X., Yang, Y. (2014). Sulphur, nitrogen-doped TiO2/graphene oxide composites as a high performance photocatalyst. Journal of Experimental Nanoscience, 9(7), 749–761. DOI: 10.1080/17458080.2012.713127
  67. Yu, M., Yu, T., Chen, S., Guo, Z., Seok, I. (2020). A Facile Synthesis of Ag/TiO2/rGO Nanocomposites with Enhanced Visible Light Photocatalytic Activity. ES Materials & Manufacturing, 7, 64-69. DOI: 10.30919/esmm5f712
  68. Isari, A.A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B. (2018). Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549–564. DOI: 10.1016/j.apsusc.2018.08.133
  69. Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., Yang, X., He, B., Li, C. (2012). Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Applied Surface Science, 258(12), 5031–5037. DOI: 10.1016/j.apsusc.2012.01.075
  70. Farhangi, N., Chowdhury, R.R., Medina-Gonzalez, Y., Ray, M.B., Charpentier, P.A. (2011). Visible light active Fe doped TiO2 nanowires grown on graphene using supercritical CO2. Applied Catalysis B: Environmental, 110, 25–32. DOI: 10.1016/j.apcatb.2011.08.012
  71. Hasan, M.R., Lai, C.W., Bee Abd Hamid, S., Jeffrey Basirun, W. (2014). Effect of Ce doping on RGO-TiO2 nanocomposite for high photoelectrocatalytic behavior. International Journal of Photoenergy, 2014 DOI: 10.1155/2014/141368
  72. Behera, L., Barik, B., Mohapatra, S. (2021). Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 620, 126553. DOI: 10.1016/j.colsurfa.2021.126553
  73. Bao, H. van, Dat, N.M., Giang, N.T.H., Thinh, D.B., Tai, L.T., Trinh, D.N., Hai, N.D., Khoa, N.A.D., Huong, L.M., Nam, H.M., Phong, M.T., Hieu, N.H. (2021). Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surfaces and Interfaces, 23, 100950. DOI: 10.1016/j.surfin.2021.100950
  74. Sutter, P.W., Flege, J.I., Sutter, E.A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7(5), 406–411. DOI: 10.1038/nmat2166
  75. Marta, B., Leordean, C., Istvan, T., Botiz, I., Astilean, S. (2016). Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films. Applied Surface Science, 363, 613–618. DOI: 10.1016/j.apsusc.2015.11.265
  76. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A. (2006). Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312(5777), 1191–1196. DOI: 10.1126/science.1125925
  77. Iliut, M., Gabudean, A.M., Leordean, C., Simon, T., Teodorescu, C.M., Astilean, S. (2013). Riboflavin enhanced fluorescence of highly reduced graphene oxide. Chemical Physics Letters, 586, 127–131. DOI: 10.1016/j.cplett.2013.09.032
  78. Iliut, M., Leordean, C., Canpean, V., Teodorescu, C.M., Astilean, S. (2013). A new green, ascorbic acid-assisted method for versatile synthesis of Au–graphene hybrids as efficient surface-enhanced Raman scattering platforms. Journal of Materials Chemistry C, 1(26), 4094–4104. DOI: 10.1039/C3TC30177J
  79. Albiter, E., Merlano, A.S., Rojas, E., Barrera-Andrade, J.M., Salazar, Á., Valenzuela, M.A. (2020). Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review. Journal of Composites Science, 5(1), 4. DOI: 10.3390/jcs5010004
  80. Moezzi, A., McDonagh, A.M., Cortie, M.B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185–186, 1–22. DOI: 10.1016/j.cej.2012.01.076
  81. Samadi, M., Zirak, M., Naseri, A., Kheirabadi, M., Ebrahimi, M., Moshfegh, A.Z. (2019). Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Research on Chemical Intermediates, 45(4), 2197–2254. DOI: 10.1007/s11164-018-03729-5
  82. Wojnarowicz, J., Chudoba, T., Lojkowski, W. (2020). A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials, 10(6), 1086. DOI: 10.3390/nano10061086
  83. Yaqoob, A.A., Noor, N.H.B.M., Serrà, A., Ibrahim, M.N.M. (2020). Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation. Nanomaterials, 10 (5), 932. DOI: 10.3390/nano10050932
  84. Raizada, P., Sudhaik, A., Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies, 2(3), 509–525. DOI: 10.1016/j.mset.2019.04.007
  85. Yang, M.Q., Xu, Y.J. (2013). Basic principles for observing the photosensitizer role of graphene in the graphene-semiconductor composite photocatalyst from a case study on graphene-ZnO. Journal of Physical Chemistry C, 117(42), 21724–21734. DOI: 10.1021/jp408400c
  86. Ida, S., Takashiba, A., Koga, S., Hagiwara, H., Ishihara, T. (2014). Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. Journal of the American Chemical Society, 136(5), 1872–1878. DOI: 10.1021/ja409465k
  87. Albiter, E., Merlano, A.S., Rojas, E., Barrera-Andrade, J.M., Salazar, Á., Valenzuela, M.A. (2021). Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review. Journal of Composites Science, 5(1), 4. DOI: 10.3390/jcs5010004
  88. Yu, H., Chen, F., Chen, F., Wang, X. (2015). In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity. Applied Surface Science, 358, 385–392. DOI: 10.1016/j.apsusc.2015.06.074
  89. Mohan, H., Ramalingam, V., Karthi, N., Malathidevi, S., Shin, T., Venkatachalam, J., Seralathan, K.K. (2021). Enhanced visible light-driven photocatalytic activity of reduced graphene oxide/cadmium sulfide composite: Methylparaben degradation mechanism and toxicity. Chemosphere, 264, 128481. DOI: 10.1016/j.chemosphere.2020.128481
  90. Cao, H.L., Cai, F.Y., Yu, K., Zhang, Y.Q., Lü, J., Cao, R. (2019). Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped-Carbon Composites Derived from in Situ Carbonization of Metal-Organic Frameworks. ACS Sustainable Chemistry and Engineering, 7(12), 10847–10854. DOI: 10.1021/acssuschemeng.9b01685
  91. Cao, H.L., Cai, F.Y., Yu, K., Zhang, Y.Q., Lü, J., Cao, R. (2019). Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped-Carbon Composites Derived from in Situ Carbonization of Metal-Organic Frameworks. ACS Sustainable Chemistry and Engineering, 7(12), 10847–10854. DOI: 10.1021/acssuschemeng.9b01685
  92. Antoniadou, M., Daskalaki, V.M., Balis, N., Kondarides, D.I., Kordulis, C., Lianos, P. (2011). Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Applied Catalysis B: Environmental, 107(1–2), 188–196. DOI: 10.1016/j.apcatb.2011.07.013
  93. Khatter, J., Chauhan, R.P. (2020). Effect of temperature on properties of cadmium sulfide nanostructures synthesized by solvothermal method. Journal of Materials Science: Materials in Electronics, 31(3), 2676–2685. DOI: 10.1007/S10854-019-02807-7
  94. Sharma, S., Dutta, V., Raizada, P., Hosseini-Bandegharaei, A., Singh, P., Nguyen, V.H. (2020). Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environmental Chemistry Letters, 19(1), 271–306. DOI: 10.1007/S10311-020-01066-X
  95. Peng, T., Li, K., Zeng, P., Zhang, Q., Zhang, X. (2012). Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation. Journal of Physical Chemistry C, 116(43), 22720–22726. DOI: 10.1021/jp306947d
  96. Shi, J.W., Yan, X., Cui, H.J., Zong, X., Fu, M.L., Chen, S., Wang, L. (2012). Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light. Journal of Molecular Catalysis A: Chemical, 356, 53–60. DOI: 10.1016/j.molcata.2012.01.001
  97. Sagadevan, S., Chowdhury, Z.Z., Johan, M.R. bin, Aziz, F.A., Roselin, L.S., Hsu, H.L., Selvin, R. (2019). Synthesis, characterization and electrochemical properties of cadmium sulfide – Reduced graphene oxide nanocomposites. Results in Physics, 12, 878–885. DOI: 10.1016/j.rinp.2018.12.058
  98. Ye, H., Park, H.S., Bard, A.J. (2011). Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. Journal of Physical Chemistry C, 115(25), 12464–12470. DOI: 10.1021/jp200852c
  99. Chen, Z., Liu, S., Yang, M.Q., Xu, Y.J. (2013). Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Applied Materials and Interfaces, 5(10), 4309–4319. DOI: 10.1021/am4010286
  100. Zhang, L., Yang, J., Zhao, X., Xiao, X., Sun, F., Zuo, X., Nan, J. (2020). Small-molecule surface-modified bismuth-based semiconductors as a new class of visible-light-driven photocatalytic materials: Structure-dependent photocatalytic properties and photosensitization mechanism. Chemical Engineering Journal, 380, 122546. DOI: 10.1016/j.cej.2019.122546
  101. Pattnaik, S.P., Behera, A., Martha, S., Acharya, R., Parida, K. (2018). Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. Journal of Nanoparticle Research, 20(1), 1–15. DOI: 10.1007/S11051-017-4110-5
  102. Usman, M., Humayun, M., Shah, S.S., Ullah, H., Tahir, A.A., Khan, A., Ullah, H. (2021). Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications - A Review. Energies, 14 (8), 2281. DOI: 10.3390/en14082281
  103. Baumert, B.A. (1995). Barium potassium bismuth oxide: A review. Journal of Superconductivity, 8 (1), 175–181. DOI: 10.1007/bf00732261
  104. Fang, W., Shangguan, W. (2019). A review on bismuth-based composite oxides for photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 44(2), 895–912. DOI: 10.1016/j.ijhydene.2018.11.063
  105. Chen, Z., Niu, F., Huang, X., Gao, T., Huang, Q., Qin, L., Huang, Y. (2015). A review: Preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses. Rev. Adv. Mater. Sci., 40, 97–109
  106. Sharma, K., Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Thakur, P., Singh, P. (2019). Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. Journal of Industrial and Engineering Chemistry, 78, 1–20. DOI: 10.1016/j.jiec.2019.06.022
  107. Zhang, L., Li, Y., Li, Q., Fan, J., Carabineiro, S.A.C., Lv, K. (2021). Recent advances on Bismuth-based Photocatalysts: Strategies and mechanisms. Chemical Engineering Journal, 419, 129484. DOI: 10.1016/j.cej.2021.129484
  108. Selvaraj, R., Qi, K., Al-Kindy, S.M.Z., Sillanpää, M., Kim, Y., Tai, C.W. (2014). A simple hydrothermal route for the preparation of HgS nanoparticles and their photocatalytic activities. RSC Advances, 4(30), 15371–15376. DOI: 10.1039/C4RA00483C
  109. Wang, C.Y., Wu, T., Lin, Y.W. (2019). Preparation and characterization of bismuth oxychloride/reduced graphene oxide for photocatalytic degradation of rhodamine B under white-light light-emitting-diode and sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 371, 355–364. DOI: 10.1016/j.jphotochem.2018.11.043
  110. Sun, D., Li, J., Feng, Z., He, L., Zhao, B., Wang, T., Li, R., Yin, S., Sato, T. (2014). Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity. Catalysis Communications, 51, 1–4. DOI: 10.1016/j.catcom.2014.03.004
  111. Hu, J., Fan, W., Ye, W., Huang, C., Qiu, X. (2014). Insights into the photosensitivity activity of BiOCl under visible light irradiation. Applied Catalysis B: Environmental, 158–159, 182–189. DOI: 10.1016/j.apcatb.2014.04.019
  112. Lin, W., Yu, X., Zhu, Y., Zhang, Y. (2018). Graphene oxide/BiOCl nanocomposite films as efficient visible light photocatalysts. Frontiers in Chemistry, 6, 274. DOI: 10.3389/fchem.2018.00274
  113. Upadhyay, R.K., Soin, N., Bhattacharya, G., Saha, S., Barman, A., Roy, S.S. (2015). Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Materials Letters, 160, 355–358. DOI: 10.1016/j.matlet.2015.07.144
  114. Hu, G., Tang, B. (2013) Photocatalytic mechanism of graphene / titanate nanotubes photocatalyst under visible-light irradiation. Materials Chemistry and Physics, 138 (2–3), 608–614, DOI: 10.1016/j.matchemphys.2012.12.027
  115. Scarpelli, F., Mastropietro, T.F., Poerio, T., Godbert, N. (2018). Mesoporous TiO2 Thin Films: State of the Art. In (D.F. Yang (Editor)) Titanium Dioxide - Material for a Sustainable Environment. DOI: 10.5772/intechopen.74244
  116. Modan, E.M., Plaiasu, A.G. (2020). Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. The Annals of “Dunarea de Jos” University of Galati Fascicle IX, Metallurgy and Materials Science, 43(1), 53–60. DOI: 10.35219/mms.2020.1.08
  117. Głowniak, S., Szczęśniak B., Choma J., Jaroniec M. (2021). Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today, 46, 109-124. DOI: 10.1016/j.mattod.2021.01.008
  118. Sayadi, M.H., Homaeigohar, S., Rezaei, A., Shekari, H. (2020). Bi/SnO2/TiO2-graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenol. Environmental Science and Pollution Research, 28(12), 15236–15247. DOI: 10.1007/S11356-020-11708-W
  119. Zhang, H., Xu, P., Du, G., Chen, Z., Oh, K., Pan, D., Jiao, Z. (2010). A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Research, 4(3), 274–283. DOI: 10.1007/S12274-010-0079-4
  120. Alsharaeh, E.H., Bora, T., Soliman, A., Ahmed, F., Bharath, G., Ghoniem, M.G., Abu-Salah, K.M., Dutta, J. (2017). Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation. Catalysts, 7(5), 133. DOI: 10.3390/catal7050133
  121. Li, T., Gao, Y., Zhou, J., Zhang, M., Fu, X., Liu, F. (2019). A Membrane Modified with Nitrogen-Doped TiO2/Graphene Oxide for Improved Photocatalytic Performance. Applied Sciences 9(5), 855. DOI: 10.3390/app9050855
  122. Garrafa-Gálvez, H.E., Alvarado-Beltrán, C.G., Almaral-Sánchez, J.L., Hurtado-Macías, A., Garzon-Fontecha, A.M., Luque, P.A., Castro-Beltrán, A. (2019). Graphene role in improved solar photocatalytic performance of TiO2-RGO nanocomposite. Chemical Physics, 521, 35–43. DOI: 10.1016/j.chemphys.2019.01.013
  123. Wang, H., Wang, G., Zhang, Y., Ma, Y., Wu, Z., Gao, D., Yang, R., Wang, B., Qi, X., Yang, J. (2019). Preparation of RGO/TiO2/Ag Aerogel and Its Photodegradation Performance in Gas Phase Formaldehyde. Scientific Reports, 9(1), 1–12. DOI: 10.1038/s41598-019-52541-7
  124. Bao, H. van, Dat, N.M., Giang, N.T.H., Thinh, D.B., Tai, L.T., Trinh, D.N., Hai, N.D., Khoa, N.A.D., Huong, L.M., Nam, H.M., Phong, M.T., Hieu, N.H. (2021). Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surfaces and Interfaces, 23, 100950. DOI: 10.1016/j.surfin.2021.100950
  125. Behera, L., Barik, B., Mohapatra, S. (2021). Improved photodegradation and antimicrobial activity of hydrothermally synthesized 0.2Ce-TiO2/RGO under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 620, 126553. DOI: 10.1016/j.colsurfa.2021.126553
  126. Sun, X., Ji, S., Wang, M., Dou, J., Yang, Z., Qiu, H., Kou, S., Ji, Y., Wang, H. (2020). Fabrication of porous TiO2-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes. Journal of Alloys and Compounds, 819, 153033. DOI: 10.1016/j.jallcom.2019.153033
  127. Babu, S.G., Karthik, P., John, M.C., Lakhera, S.K., Ashokkumar, M., Khim, J., Neppolian, B. (2019). Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrasonics Sonochemistry, 50, 218–223. DOI: 10.1016/j.ultsonch.2018.09.021
  128. Kang, S., Pawar, R.C., Pyo, Y., Khare, V., Lee, C.S. (2016). Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. Journal of Experimental Nanoscience, 11 (4), 259-275. DOI: 10.1080/17458080.2015.1047420
  129. Dong, S., Pi, Y., Li, Q., Hu, L., Li, Y., Han, X., Wang, J., Sun, J. (2016). Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: Mechanism and degradation pathways. Journal of Alloys and Compounds, 663, 1–9. DOI: 10.1016/j.jallcom.2015.12.027
  130. Zheng, X., Yuan, J., Shen, J., Liang, J., Che, J., Tang, B., He, G., Chen, H. (2019). A carnation-like rGO/Bi2O2CO3/BiOCl composite: efficient photocatalyst for the degradation of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 30(6), 5986–5994. DOI: 10.1007/S10854-019-00898-W
  131. Xue, B., Zou, Y. (2018). High photocatalytic activity of ZnO–graphene composite. Journal of Colloid and Interface Science, 529, 306–313. DOI: 10.1016/j.jcis.2018.04.040
  132. Wang, H., Peng, D., Chen, T., Chang, Y., Dong, S. (2016). A novel photocatalyst AgBr/ZnO/RGO with high visible light photocatalytic activity. Ceramics International, 42(3), 4406–4412. DOI: 10.1016/j.ceramint.2015.11.124

Last update:

No citation recorded.

Last update:

No citation recorded.