skip to main content

Synthesis, Structural Characterization and Photocatalytic CO2 Reduction Activity of a New Gd(III) Coordination Polymer with 6-Phenylpyridine-2-carboxylic acid and 4,4’-Bipyridine Ligands

1College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China

2College of Biology and Oceanography, Weifang University, Weifang 261061, China

Received: 20 Jul 2023; Revised: 9 Aug 2023; Accepted: 9 Aug 2023; Available online: 13 Aug 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A new Gd(III) coordination polymer, {[Gd(L1)3(H2O)2]∙L2}n (1) (HL1 = 6-phenylpyridine-2-carboxylic acid, L2 = 4,4’-bipyridine) was synthesized using 6-phenylpyridine-2-carboxylic acid, 4,4’-bipyridine, NaOH and GdCl3∙6H2O. The structure of Gd(III) coordination polymer has been characterized by IR and X-ray single crystal diffraction. The result of single crystal analysis indicates that fundamental unit of Gd(III) coordination polymer contains one Gd(III) ion, three L1 ligands, two coordinated water molecules and one uncoordinated 4,4’-bipyridine. In 1, the Gd(III)  ion is eight-coordinated and surrounded by six O atoms from three L1 ligands and two O atoms from two coordinated water molecules, respectively. The complex 1 exhibits 1D chained structure by the bridging interactions of  two carboxyl-oxygen atoms and O−H∙∙∙N hydrogen bonds interactions. The 1D chains are further connected by - stacking interactions to form 3D network architecture. The photocatalytic CO2 reduction activity of complex 1 has also been investigated. The complex 1 exhibits good CO2 reduction activity. With the increase of time, the yield of CO from 18.2 mmol/g in the first hour to 60.3 mmol/g in the third hour. And the CO selectivity has reached 100%. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: 6-Phenylpyridine-2-carboxylic acid; 4,4’-bipyridine; Gd(III) coordination polymer; Synthesis; Structural Characterization; Photocatalytic CO2 reduction

Article Metrics:

  1. Zhou, J., Yu, W.T., Tang, S.S., He, X.M., Zhang, X.L., Zhou, L., Sun, L., Zhang, J. (2022). Tuning the bonding dimensions for coordination polymers based on rare earth metal ions. Chinese Journal of Structural Chemistry, 24, 7500-7504. DOI: 10.1039/d2ce01131j
  2. Calado, C.M.S., da Silva, K.R.M., Santos, T.V., Viana, R.D., Meneghetti, S.M.P., Barbosa, C.D.D.S. (2022). Green and facile synthesis of EuBDC coordination polymer: Effects of ultrasound and stabilizing agent on morphological, structural and photophysical properties. Optical Materials, 125, 112107. DOI: 10.1016/j.optmat.2022.112107
  3. Wang, L., Liu, H., Huang, S., Zhong, S.L. (2021). Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets. Rare Metals, 40, 728-735. DOI: 10.1007/s12598-017-0914-9
  4. Khalfaoui, O., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J., Long, J. (2021). Synthesis, crystal structures, luminescent and magnetic properties of rare earth dinuclear complexes and one-dimensional coordination polymers supported by two derivatives of cinnamic acid. Polyhedron, 207, 115366. DOI: 10.1016/j.poly.2021.115366
  5. Liu, M.C., Yin, Q.Q., Zhong, S.N., Sun, H.M., Wang, Y.B., Liu, S., Wang, J., Diao, Y.Y., Yang, F.F., Xin, T.T. (2022). Two novel rare earth coordination polymers derived from zwitterionic 1,3-bis(1-carboxylatoethyl)imidazolium bromide: structures and magnetic properties. Journal of Molecular Structure, 1250, 131665. DOI: 10.1016/j.molstruc.2021.131665
  6. Yang, L.Z., Yang, R.X., Zhu, P.Y., Yue, T.C., Yu, Y.M., Wang, D.Z., Wang, L.L. (2023). Magnetic, fluorescence and electric properties of rare earth complexes based on reduced Schiff base carboxylic acid ligand. Journal of Molecular Structure, 1281, 135177. DOI: 10.1016/j.molstruc.2023.135177
  7. Zeng, Z.J., Shen, H.X., Gao, W., Guo, Q.F., Chen, M.J., Yan, X.J., Liu, H.N. Ji, Y.H. (2022). A novel biocompatible Eu-based coordination polymers of cytarabine anticancer drug: Preparation, luminescence properties and in vitro anticancer activity studies. Frontiers in Chemistry, 10, 1043810. DOI: 10.3389/fchem.2022.1043810
  8. Zhang, L.Y., Shi, H.R., Tan, X., Jiang, Z.Q., Wang, P., Qin, J.L. (2022). Ten-gram-scale mechanochemical synthesis of ternary lanthanum coordination polymers for antibacterial and antitumor activities. Frontiers in Chemistry, 10, 898324. DOI: 10.3389/fchem.2022.898324
  9. Xue, D.X., Cairns, A.J., Belmabkhout, Y., Wojtas, L., Liu, Y.L., Alkordi, M.H., Eddaoudi, M. (2013). Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. Journal of the American Chemical Society, 135, 7660-7667. DOI: 10.1021/ja401429x
  10. Meng, S.Y., Li, G., Wang, P., He, M., Sun, X.H., Li, Z.X. (2023). Rare earth-based MOFs for photo/electrocatalysis. Materials Chemistry Frontiers, 5, 806-827. DOI: 10.1039/D2QM01201D
  11. Sinchow, M., Semakul, N., Konno, T., Rujiwatra, A. (2021). Lanthanide coordination polymers through design for exceptional catalytic performances in CO2 cycloaddition reactions. ACS Sustainable Chemistry & Engineering, 9, 8581-8591. DOI: 10.1021/acssuschemeng.1c01955
  12. Shen, T., Ni, X.F., Ling, J. (2021). Recent progress in ring-opening polymerizations catalyzed by rare earth catalysts. Acta Polymerica Sinica, 52, 445-455. DOI: 10.11777/j.issn1000-3304.2020.20261
  13. Li, X.L., Xu, T.Q. (2023). Stereoselective polymerization of aromatic vinyl polar monomers. European Journal of Inorganic Chemistry, 26, e202200699. DOI: 10.1002/ejic.202200699
  14. Wang, H.H., Cue, J.M.O., Calubaquib, E.L., Kularatne, R.N., Taslimy, S., Miller, J.T., Stefan, M.C. (2021). Neodymium catalysts for polymerization of dienes, vinyl monomers, and epsilon-caprolactone. Polymer Chemistry, 12, 6790-6823. DOI: 10.1039/d1py01270c
  15. Skvortsov, G.G., Shavyrin, A.S., Kovylina, T.A., Cherkasov, A.V., Trifonov, A.A. (2019). Rare-earth amido and borohydrido complexes supported by tetradentate amidinate ligands: synthesis, structure, and catalytic activity in polymerization of cyclic esters. European Journal of Inorganic Chemistry, 2019, 5008-5017. DOI: 10.1002/ejic.201900897
  16. Fu, J.W., Jiang, K.X., Qiu, X.Q., Yu, J.G., Liu, M. (2020). Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 32, 222-243. DOI: 10.1016/j.mattod.2019.06.009
  17. Kamakura, Y., Suppaso, C., Yamamoto, I., Mizuochi, R., Asai, Y., Motohashi, T., Tanaka, D., Maeda, K. (2023). Tin(II)-based metal-organic frameworks enabling efficient, selective reduction of CO2 to formate under visible light. Angewandte Chemie - International Edition, 62, e202305923. DOI: 10.1002/anie.202305923
  18. Zhang, J.H., Wang, Y.C., Wang, H.J., Zhong, D.C., Lu, T.B. (2022). Enhancing photocatalytic performance of metal-organic frameworks for CO2 reduction by a bimetallic strategy. Chinese Chemical Letters, 33, 2065-2068. DOI: 10.1016/j.cclet.2021.09.035
  19. Liu, D.C., Zhang, M.L., Huang, H.H., Feng, Q., Su, C., Mo, A.N., Wang, J.W., Qi, Z.P., Zhang, X.J., Jiang, L., Chen, Z.L. (2021). Co-II-Zn-II heterometallic dinuclear complex with enhanced photocatalytic activity for CO2-to-CO conversion in a water-containing system. ACS Sustainable Chemistry & Engineering, 9, 9273-9281. DOI: 10.1021/acssuschemeng.1c01708
  20. Huang, N.Y., He, H., Liu, S.J., Zhu, H.L., Li, Y.J., Xu, J., Huang, J.R., Wang, X., Liao, P.Q., Chen, X.M. (2021). Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. Journal of the American Chemical Society, 143, 17424-17430. DOI: 10.1021/jacs.1c05839
  21. Dong, Y.L., Liu, H.R., Wang, S.M., Guan, G.W., Yang, Q.Y. (2023). Immobilizing isatin-schiff base complexes in NH2-UiO-66 for highly photocatalytic CO2 reduction. ACS Catalysis, 13, 2547-2554. DOI: 10.1021/acscatal.2c04588
  22. Kumagai, H., Tamaki, Y., Ishitani, O. (2022). Photocatalytic systems for CO2 reduction: metal-complex photocatalysts and their hybrids with photofunctional solid materials. Accounts of Chemical Research, 55, 978-990. DOI: 10.1021/acs.accounts.1c00705
  23. Wang, L.H., Kong, F.Y., Tai, X.S. (2022). Synthesis, crystal structure and catalytic activity of tri-nuclear Zn(II) complex based on 6-phenylpyridine-2-carboxylic acid and bis(4-pyridyl)amine ligands. Bulletin of Chemical Reaction Engineering & Catalysis, 17, 394-402. DOI: 10.9767/bcrec.17.2.13952.394-402
  24. Tai, X.S., Xia, Y.P. (2022). The Crystal Structure of [(2,2’-Bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co. Zeitschrift für Kristallographie. New Crystal Structures, 237, 225-227. DOI: 10.1515/ncrs-2021-0473
  25. Tai, X.S., Liang, L., Li, X.T., Cao, S.H., Wang, L.H. (2021). Crystal Structure of Diaqua-bis(μ2-6-phenylpyridine-2-carboxylate-κ3N,O:O)-bis(6-phenylpyridine-2-carboxylato-κ2N,O)lead(II)-N,N-dimethylformamide-water (1/2/4), C54H58N6O16Pb2. Zeitschrift für Kristallographie. New Crystal Structures, 236, 1199-1201. DOI: 10.1515/ncrs-2021-0277
  26. Tai, X.S., Wang, Z.J., Ouyang, J., Li, Y.F., Zhang, W., Jia, W.L., Wang, L.H. (2021). The Crystal Structure of [(Phenantroline-κ2N,N’)-bis(6-phenylpyridine-2-carboxylate-κ2 N,O)cobalt(II)]monohydrate, C36H26N4O5Co. Zeitschrift für Kristallographie. New Crystal Structures, 236, 1309-1311. DOI: 10.1515/ncrs-2021-0319
  27. Wang, L.H., Tai, X.S., Xia, Y.P. (2022). The Crystal Structure of Catena-poly[(m2-4,4′-bipyridine-κ2N:N)-bis(6-phenylpyridine-2-carboxylato-κ2N,O) zinc(II)], C34H24N4O4Zn. Zeitschrift für Kristallographie. New Crystal Structures, 237, 305-307. DOI: 10.1515/ncrs-2022-0003
  28. Feng, Y.M., Tai, X.S., Xia, Y.P. (2022). The crystal structure of [(2,2’-bipyridine-κ2N,N)-bis(6-phenylpyridine-2-carboxylate-κ2N,O)copper(II)], C34H24N4O4Cu. Zeitschrift für Kristallographie. New Crystal Structures, 237, 285-287. DOI: 10.1515/ncrs-2021-0486
  29. Liu, P., Wang, L.H., Tai, X.S. (2023). The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2N,O)-(μ 2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd. Zeitschrift für Kristallographie. New Crystal Structures, 238, 771-773. DOI: 10.1515/ncrs-2023-0201
  30. Wang, L.H., Kong, F.Y., Tai, X.S. (2022). Synthesis, structural characterization of a new Ni(II) complex and its catalytic activity for oxidation of benzyl alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 17, 375-382. DOI: 10.9767/bcrec.17.2.13975.375-382
  31. Wang, L.H., Tai, X.S. (2022). The crystal structure of diaqua-bis(6-phenylpyridine-2-carboxylato-κ2N,O)manganese(II)-water-dimethylformamide(1/2/1), C27H31N3O9Mn. Zeitschrift für Kristallographie. New Crystal Structures, 237, 675-677. DOI: 10.1515/ncrs-2022-0119
  32. Sheldrick, G.M. (2015). Crystal Structure Refinement with SHELXL. Acta Crystallographica, C71, 3-8. DOI: 10.1107/S2053229614024218
  33. Sheldrick, G.M. (2015). SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3-8. DOI: 10.1107/S2053273314026370
  34. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2009). OLEX2: A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42, 339-341. DOI: 10.1107/S0021889808042726
  35. Niu, S.Y., Jin, J., Jin, X.L., Cong, Y., Yang, Z.Z. (2000). Crystal structure and magnetism of the binuclear Gd(III) complex Gd2(C12H8N2)2(C6H5COO)6. Chinese Science Bulletin, 45, 706-711. DOI: 10.1007/BF02886174
  36. Li, W.J., Chen, W.Z., Huang, M.L. (2016). Synthesis and crystal stucture of the mixed complex [Gd(Ts-p-aba)3(phen)]2.2DMF.4.4H2O. Journal of Synthetic Crystals, 45, 2113-2117. DOI: 10.16553/j.cnki.issn1000-985x.2016.08.022
  37. Li, Y., Li, B.H., Zhang, D.N., Cheng, L., Xiang, Q.J. (2020). Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano, 14, 10552-10561. DOI: 10.1021/acsnano.0c04544
  38. Ye, L.Q., Jin, X.L., Ji, X.B., Liu, C., Su, Y.R., Xie, H.Q., Liu, C. (2016). Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chemical Engineering Journal, 291, 39-46. DOI: 10.1016/j.cej.2016.01.032
  39. Liu, Y., Zhou, S., Li, J., Wang, Y., Jiang, G., Zhao, Z., Liu, B., Gong, X., Duan, A., Liu, J., Wei, Y., Zhang, L. (2015). Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Applied Catalysis B: Environmental, 168-169, 125-131. DOI: 10.1016/j.apcatb.2014.12.011
  40. Liu, Y.P., Shen, D.Y., Zhang, Q., Lin, Y., Peng, F. (2021). Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface. Applied Catalysis B: Environmental, 283, 119630. DOI: 10.1016/j.apcatb.2020.119630
  41. Zheng, C., Qiu, X.Y., Han, J.Y., Wu, Y.F., Liu, S.Q. (2019). Zero-dimensional-g-CNQD-coordinated two-dimensional porphyrin MOF hybrids for boosting photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 45, 42243-42249. DOI: 10.1021/acsami.9b15306
  42. Cheng, X.M., Dao, X.Y., Wang, S.Q., Zhao, J., Sun, W.Y. (2021). Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catalysis, 11, 650-658. DOI: 10.1021/acscatal.0c04426
  43. Shi, H., Long, S., Hu, S., Hou, J., Ni, W., Song, C., Li, K., Gurzadyan, G.G., Guo, X. (2019). Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 245, 760-769. DOI: 10.1016/j.apcatb.2019.01.036
  44. Tai, X.S., Wang, Y.F., Wang, L.H., Yan, X.H. (2023). Synthesis, structural characterization, Hirschfeld surface analysis and photocatalytic CO2 reduction of Yb(III) complex with 4-aacetylphenoxyacetic acid and 1,10-phenanthroline ligands. Bulletin of Chemical Reaction Engineering & Catalysis, 18, 285-293. DOI: 10.9767/bcrec.18471

Last update:

No citation recorded.

Last update:

No citation recorded.