skip to main content

Synthesis of ZnO Nanoparticle using Lidah Mertua (Sansevieria trifasciata) Extract through Sol-Gel Method and Its Application for Methylene Blue Photodegradation

1Department of Chemistry Education, Faculty of Tarbiya and Teaching Science, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

2Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat, Tangerang Selatan 15412, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

4 Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

View all affiliations
Received: 25 Jul 2023; Revised: 17 Aug 2023; Accepted: 17 Aug 2023; Available online: 25 Aug 2023; Published: 15 Oct 2023.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methylene blue is widely used in the textile industry and is difficult to degrade naturally because of its heterocyclic aromatic structure. One technique that can be used to degrade methylene blue is through a photocatalytic process using ZnO nanoparticles. This study aims to synthesize ZnO nanoparticles using Lidah mertua extract (Sansevieria trifasciata) as a capping agent by the sol-gel method, and determine the characteristics and stability of ZnO nanoparticles in methylene blue photodegradation. The synthesis of ZnO nanoparticles begins with drying Lidah mertua, grinding it, and then extracting it using distilled water. Furthermore, the extract was reacted with Zn(CH3COO)2.2H2O 0.15 M at pH 8. The extract was characterized using Fourier Transform Infrared (FTIR), and the ZnO nanoparticles were characterized using X-Ray Diffraction (XRD), ultraviolet-visible (UV-Vis) DRS, and Scanning Electron Microscopy (SEM). Lidah mertua extract has OH (hydroxyl), CN, CH, and C=C functional groups. The obtained ZnO nanoparticles have a crystal size of 19.324 nm. The crystalline phase is hexagonal; the morphology is spherical, with a particle size of 79.153 nm and a band gap energy of 3.21 eV. ZnO nanoparticles exhibited a methylene blue decolorization of 98.50% through 43.41% by adsorption and 55.09% by photocatalytic mechanism. ZnO nanoparticles showed good stability for a three-cycle reaction. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

Keywords: Methylene blue; photocatalyst; Sansevieria trifasciata; ZnO nanoparticles
Funding: UIN Syarif Hidayatullah Jakarta under contract contract number B-302/LP2M-PUSLITPEN/TL.02/2023

Article Metrics:

  1. Koyuncu, H., Kul, A.R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10, 72. DOI: 10.1007/s13201-020-1156-9
  2. Sahu, S., Pahi, J. K., Sahu, U. K., Patel. (2020). Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon an efficient bioadsorbent for methylene blue dye: Equilibrium, kinetic, and thermodynamic study. Environ. Sci. Pollut. Res, 27, 22579–22592. DOI: 10.1007/s11356-020-08561-2
  3. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A., Ahmad, A. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2), 242. DOI: 10.5040/9781501365072.12105
  4. Kumar, P. S., Ramalingam, S., Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of chemical engineering, 28, 149-155. DOI: 10.1007/s11814-010-0342-0
  5. Akbari, Z., Sabouri, Z., Hosseini, H. A, Hashemzadeh, A., Khatami, M., Darroudi, M. (2020). Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications, 115, 107867. DOI: 10.1016/j.inoche.2020.107867
  6. Aliah, H., Karlina, Y. (2015). Semikonduktor TiO2 sebagai material fotokatalis berulang. Jurnal Istek, 9(1), 185–203. ISSN 1979-8911
  7. Hassani, A., Farajia, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry & Photobiology A: Chemistry, 400(2020), 112665. DOI: 10.1016/j.jphotochem.2020.112665
  8. Hassani, A., Krishnan, S., Scaria, J., Eghbali, P., Nidheesh, P. V. (2021). Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Current Opinion in Solid State and Materials Science, 25 (2021) 100941. DOI: 10.1016/j.cossms.2021.100941
  9. Samanta, P. K., Saha, A., Kamilya, T. (2015). Morphological and optical property of spherical ZnO nanoparticles. Optik, 126(18), 1740–1743. DOI: 10.1016/j.ijleo.2015.04.025
  10. Ningsih, S. K. (2017). Sintesis dan karakterisasi nanopartikel ZnO doped Cu2+ melalui metoda sol-gel. EKSAKTA: Berkala Ilmiah Bidang MIPA, 18(02), 39-51. DOI: 10.1088/1751-8113/44/8/085201
  11. Saridewi, N., Syaputro., Aziz, I., Dasumiati, D., Kumila. (2021). Synthesis and characterization of ZnO nanoparticles using pumpkin seed extract (Cucurbita moschiata) by the sol-gel method. AIP Conference Proceedings (Vol. 2349, No. 1). DOI: 10.1063/5.0051826
  12. Sari, R. N., Nurhasni., Yaqin, M. A. (2017). Green Synthesis nanoparticle ZnO Sargassum sp. extract and the products charactheristic. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 238-254. DOI: 10.17844/jphpi.v20i2.17905
  13. Dewatisari, W. F., Rumiyanti, L., Rakhmawati, I. (2018). Rendemen dan skrining fitokimia pada ekstrak daun Sanseviera sp. Jurnal Penelitian Pertanian Terapan, 17(3), 197-202. doi: 10.25181/jppt.v17i3.336
  14. Makuła, P., Pacia, M., Macyk, W. (2017). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The Journal of Physical Chemistry Letters, 9(23), 6814-6817. DOI: 10.1021/acs.jpclett.8b02892
  15. Ifeanyichukwu, U. L., Fayemi, O. E., Ateba, C. N. (2020). Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 25(19), 4521.DOI: 10.3390/molecules25194521
  16. Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R., Kruszka, D., Kachlicki, P., Franklin, G. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6), 940. DOI: 10.3390/ma11060940
  17. Tournebize, J., Boudier, O., Joubert, H., Eidi, G., Bartosz, P., Maincent, P., Leroy, Sapin. (2012). Impact of gold nanoparticle coating on redox homeostasis. International Journal of Pharmaceutics, 438(1-2), 107-116. DOI: 10.1016/j.ijpharm.2012.07.026
  18. Ajmal, A. W., Masood, F., Yasin, T. (2018). Influence of sepiolite on thermal, mechanical and biodegradation properties of poly-3-hydroxybutyrate-co-3-hydroxyvalerate nanocomposites. Applied Clay Science, 156, 11-19. DOI: 10.1016/j.clay.2018.01.010
  19. Nurbayasari, R., Saridewi, N., Shofwatunnisa. (2017). Biosynthesis and characterization of ZnO nanoparticles with extract of green seaweed Caulerpa sp. Jurnal Perikanan Universitas Gadjah Mada, 19(1), 17-28. DOI: 10.22146/jfs.24488
  20. Soto-Robles, C. A., Nava, O., Cornejo, L. (2021). Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. Journal of Molecular Structure, 1225, 129101. DOI: 10.1016/j.molstruc.2020.129101
  21. Sangeetha, G., Rajeshwari, S., Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560-2566. DOI: 10.1016/j.materresbull.2011.07.046
  22. Vasquez, R. D., Apostol, J. G., de Leon, J. D., Mariano, J. D. (2016). Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum JG Agardh: assessment of toxicity and hepatoprotective activity. OpenNano, 1, 16-24. DOI: 10.1016/j.onano.2016.03.001
  23. Alshehri, A., Malik, A. (2019). Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. Journal of Materials Science: Materials in Electronics, 30, 16156-16173. DOI: 10.1007/s10854-019-01985-8
  24. Balcha, A., Yadav, O. P., Dey. (2016). Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environmental Science and Pollution Research, 23, 25485-25493. DOI: 10.1007/s11356-016-7750-6
  25. Chiu, Y. H., Chang., Chen, C. Y., Sone, M., Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9(5), 430. DOI: 10.3390/catal9050430
  26. Kumar, A. (2017). A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mater. Sci. Eng. Int. J., 1(3), 106–114. DOI: 10.15406/mseij.2017.01.00018
  27. Riskiani, E., Suprihatin, I. E., Sibarani, J. (2018). Fotokatalis bentonit-Fe2O3 untuk Degradation zat warna remazol brilliant blue. Cakra Kimia (Indonesian E-Journal of Applied Chemistry), 7(1)
  28. Jeon, Y. H., Kwon, J. J., Lee, B. H. (2006). Study on pH sensor using methylene blue adsorption and a long-period optical fiber grating pair. Journal of the Optical Society of Korea, 10(1), 28-32. DOI: 10.3807/josk.2006.10.1.028
  29. Lee, K. M., Lai, C. W., Ngai, K. S., Juan, J. C. (2015). Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research, 88, 428-448. DOI: 10.1016/j.watres.2015.09.045
  30. Farrokhi, A., Jafarpour, M., Alipour, M. (2019). Solar-driven advanced oxidation process catalyzed by metal–organic frameworks for water depollution. Polyhedron, 170, 325–333. DOI: 10.1016/j.poly.2019.06.005
  31. Zulys, A., Adawiah, Gunlazuardi, J., Yudhi. (2021). Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 170-178. DOI: 10.9767/bcrec.16.1.10309.170-178
  32. Abramovic, B., Despotovic, V., Šojic, D., Fincur, N. (2015). Mechanism of clomazone photocatalytic degradation: hydroxyl radical, electron and hole scavengers. Reaction Kinetics, Mechanisms and Catalysis, 115, 67-79. DOI: 10.1007/s11144-014-0814-z
  33. Kitture, R., Koppikar, S. J., Kaul-Ghanekar, R., Kale, S. N. (2011). Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. Journal of Physics and Chemistry of Solids, 72(1), 60-66. DOI: 10.1016/j.jpcs.2010.10.090
  34. Marsel, N., Imani, T., Kato, D., Oshima, E. (2022). High reusability of greensynthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye. Materials Today Communications, 33, 104450. DOI: 10.1016/j.mtcomm.2022.104450
  35. Sin, J. C., Lam, S. M., Zeng, H., Lin, H., Li, H., Huang, L., Lim, J. W. (2022). Enhanced synchronous photocatalytic 4-chlorophenol degradation and Cr (VI) reduction by novel magnetic separable visible-light-driven Z-scheme CoFe2O4/P-doped BiOBr heterojunction nanocomposites. Environmental Research, 212, 113394. DOI: 10.1016/j.envres.2022.113394

Last update:

No citation recorded.

Last update:

No citation recorded.