skip to main content

Sustainable Development of ZnSO₄·H₂O and ZnO via Gelatin-Based Colloids for Advanced Dye Photodegradation

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia

Received: 28 Nov 2024; Revised: 17 Jan 2025; Accepted: 6 Feb 2025; Available online: 15 Feb 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study looks at how to sustainably develop ZnSO₄·H₂O (Gunningite) and ZnO (Wurtzite) nanoparticles using gelatin-based colloids, focusing on their ability to break down dyes. Zinc acetate and zinc sulfate heptahydrate were used as starting materials, with gelatin helping to stabilize the process. After heating at 550 °C for 4 hours, the nanoparticles were analyzed for their surface area and composition. Gunningite had a higher surface area of 61.5 m²/g, compared to Wurtzite’s 11.4 m²/g. Elemental analysis showed Gunningite contained 71% zinc, 21% oxygen, and 2% sulfur, while Wurtzite had 69% zinc and 31% oxygen. The photocatalytic activity was tested by degrading methylene blue under UV light. Gunningite had better results, achieving 87% degradation compared to Wurtzite's 72%. This was due to Gunningite’s larger surface area and smaller particle size, making it more effective for treating dye wastewater. Future studies could explore larger-scale synthesis and industrial uses. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Gunningite; wurtzite; photodegradation; methylene blue
Funding: Universitas Sebelas Maret under contract International Research Collaboration 2025

Article Metrics:

  1. Ducher, M., Blanchard, M., Balan, E. (2018). Equilibrium isotopic fractionation between aqueous Zn and minerals from first-principles calculations. Chem. Geol. 483:342–350
  2. Babikier, M., Wang, D., Wang, J., Li, Q., Sun, J., Yan, Y., Yu, Q., Jiao, S. (2014). Fabrication and properties of sulfur (S)-doped ZnO nanorods. Journal of Materials Science: Materials in Electronics, 25(1), 157–162. DOI: 10.1007/s10854-013-1566-7
  3. Ulfa, M., Iswanti, Y., Irwanti, Y., Sholeha, N.A., Masruchin, N., Subagyo, R., Bahruji, H., Prasetyoko, D. (2023). Hydrothermal effect of gunningite use Pluronic F127-Gelatin as template and the ibuprofen adsorption performance. Heliyon, 9(3), e14473. DOI: 10.1016/j.heliyon.2023.e14473
  4. Lhimr, S., Bouhlassa, S., Ammary, B. (2019). Effect of molar ratio on structural and size of ZnO/C Nanocomposite Synthesized Using a colloidal method at low temperature. Indonesian Journal of Chemistry, 19(2), 422–429. DOI: 10.22146/ijc.37932
  5. Prasetyoko, D., Sholeha, N.A., Subagyo, R., Ulfa, M., Bahruji, H., Holilah, H., Pradipta, M.F., Jalil, A.A. (2023). Mesoporous ZnO nanoparticles using gelatin — Pluronic F127 as a double colloidal system for methylene blue photodegradation. Korean Journal of Chemical Engineering, 40(1), 112–123. DOI: 10.1007/s11814-022-1224-y
  6. Shin, J., Andreas Hutomo, C., Kim, J., Jang, J., Beum Park, C. (2022). Natural pollen exine-templated synthesis of photocatalytic metal oxides with high surface area and oxygen vacancies. Applied Surface Science, 599(June), 154064. DOI: 10.1016/j.apsusc.2022.154064
  7. Ulfa, M., Ari, M., Ali, P. (2022). Influence of Calcination Temperatures on Gunningite-Based Gelatin Template and Its Application as Ibuprofen Adsorption. 22(6), 1–9. DOI: 10.22146/ijc.77004
  8. Lyu, Y., Sun, Z., Xin, Y., Liu, Y., Wang, C., Liu, X. (2019). Reactivation of spent S-Zorb adsorbents for gasoline desulfurization. Chemical Engineering Journal, 374(May), 1109–1117. DOI: 10.1016/j.cej.2019.06.010
  9. Rondius, B.& (2012). Vibrational spectroscopic study of the zinc sulfate minerals gunningite and namuwite. Journal of Molecular Structure, 1023, 1–11. DOI: 10.1016/j.molstruc.2012.04.056
  10. Li, J., Han, L., Zhang, T., Qu, C., Yu, T., Yang, B. (2022). Removal of Methylene Blue by Metal Oxides Supported by Oily Sludge Pyrolysis Residues. Applied Sciences (Switzerland), 12(9) DOI: 10.3390/app12094725
  11. Idris, N.J., Bakar, S.A., Mohamed, A., Muqoyyanah, M., Othman, M.H.D., Mamat, M.H., Ahmad, M.K., Birowosuto, M.D., Soga, T. (2021). Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye. Environmental Science and Pollution Research, 28(6), 6966–6979. DOI: 10.1007/s11356-020-10904-y
  12. Albiss, B., Abu-Dalo, M. (2021). Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability (Switzerland), 13(9) DOI: 10.3390/su13094729
  13. Saramas, D., Ekgasit, S. (2021). Nano-zinc oxide-doped activated carbon from popped rice and its application for feed additive. Engineering Journal, 25(3), 41–50. DOI: 10.4186/ej.2021.25.3.41
  14. Lihitkar, P.B., Violet, S., Shirolkar, M., Singh, J., Srivastava, O.N., Naik, R.H., Kulkarni, S.K. (2012). Confinement of zinc oxide nanoparticles in ordered mesoporous silica MCM-41. Materials Chemistry and Physics, 133(2–3), 850–856. DOI: 10.1016/j.matchemphys.2012.01.106
  15. Wu, M., Shi, L., Lim, T.T., Veksha, A., Yu, F., Fan, H., Mi, J. (2018). Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas. Chemical Engineering Journal, 353(July), 273–287. DOI: 10.1016/j.cej.2018.07.134
  16. Venkatesan, S., Suresh, S., Ramu, P., Kandasamy, M., Arumugam, J., Thambidurai, S., Prabu, K.M., Pugazhenthiran, N. (2022). Biosynthesis of zinc oxide nanoparticles using Euphorbia milii leaf constituents: Characterization and improved photocatalytic degradation of methylene blue dye under natural sunlight. Journal of the Indian Chemical Society, 99(5), 100436. DOI: 10.1016/j.jics.2022.100436
  17. Ulfa, M., Nisa, D., Muhammad, F.P., Prasetyoko, D. (2021). Investigating the Hydrophilicity of Zinc Oxide Nanoparticles Using Xylene and Water for Ibuprofen Adsorption. Journal of Chemical Technology and Metallurgy, 56(4), 761–768
  18. Zerdali, M., Hamzaoui, S., Teherani, F.H., Rogers, D. (2006). Growth of ZnO thin film on SiO2/Si substrate by pulsed laser deposition and study of their physical properties. Materials Letters, 60(4), 504–508. DOI: 10.1016/j.matlet.2005.09.024
  19. Ivanova, T., Harizanova, A., Koutzarova, T., Vertruyen, B., Closset, R. (2024). Sol–Gel Synthesis of ZnO:Li Thin Films: Impact of Annealing on Structural and Optical Properties. Crystals, 14(1) DOI: 10.3390/cryst14010006
  20. Seki, T., Chiang, K.Y., Yu, C.C., Yu, X., Okuno, M., Hunger, J., Nagata, Y., Bonn, M. (2020). The bending mode of water: A powerful probe for hydrogen bond structure of aqueous systems. Journal of Physical Chemistry Letters, 11(19), 8459–8469. DOI: 10.1021/acs.jpclett.0c01259
  21. Fatoni, A., Hasanah, M., Sirumapea, L., Putri, A.D., Sari, K., Khairani, R.D., Hidayati, N. (2023). Synthesis, Characterization of Polyvinyl Alcohol-Chitosan-ZnO/CuO Nanoparticles Film and Its Biological Evaluation as An Antibacterial Agent of Staphylococcus aureus. al-Kimiya, 10(1), 1–12. DOI: 10.15575/ak.v10i1.24725
  22. Hassen, A., Moawed, E.A., Bahy, R., El Basaty, A.B., El-Sayed, S., Ali, A.I., Tayel, A. (2024). Synergistic effects of thermally reduced graphene oxide/zinc oxide composite material on microbial infection for wound healing applications. Scientific reports, 14(1), 22942. DOI: 10.1038/s41598-024-73007-5
  23. Motakef Kazemi, N., Asadi, A. (2022). Methylene Blue Adsorption from Aqueous Solution Using Zn2(Bdc)2(Dabco) Metal-Organic Framework and Its Polyurethane Nanocomposite. Iranian Journal of Chemistry and Chemical Engineering, 41(12), 4026–4038. DOI: 10.30492/IJCCE.2022.538689.4926
  24. Hosseini, S., Mashaykhi, S., Babaei, S., Afr, S. (2016). Preparation of Graphene Oxide (GO). J Chem, 69, 105–112
  25. Ahmadi, S., Igwegbe, C.A. (2020). Removal of Methylene Blue on Zinc Oxide Nanoparticles: Nonlinear and Linear Adsorption Isotherms and Kinetics Study. Sigma Journal of Engineering and Natural Sciences, 38(1), 289–303
  26. Ren, Z., Li, Y., Ren, Q., Zhang, X., Fan, X., Liu, X., Fan, J., Shen, S., Tang, Z., Xue, Y. (2024). Unveiling the Role of Sulfur Vacancies in Enhanced Photocatalytic Activity of Hybrids Photocatalysts. Nanomaterials, 14(12) DOI: 10.3390/nano14121009
  27. Tateishi, I., Furukawa, M., Katsumata, H., Kaneco, S. (2024). Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO. Separations, 11(1) DOI: 10.3390/separations11010019
  28. Murugan, S., Ashokkumar, M., Sakthivel, P., Choi, D. (2023). Sulfur deficiency mediated visible emission of ZnS QDs by magnesium dopant and their application in waste water treatment. Heliyon, 9(7), e17947. DOI: 10.1016/j.heliyon.2023.e17947
  29. Qi, Z., Chen, J., Zhou, W., Li, Y., Li, X., Zhang, S., Fan, J., Lv, K. (2023). Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal. Chemosphere, 316(October 2022), 137813. DOI: 10.1016/j.chemosphere.2023.137813
  30. Reddy, A.J., Kokila, M.K., Nagabhushana, H., Rao, J.L., Shivakumara, C., Nagabhushana, B.M., Chakradhar, R.P.S. (2011). Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 53–58. DOI: 10.1016/j.saa.2011.05.043
  31. Khan, Y., Durrani, S.K., Mehmood, M., Ahmad, J., Khan, M.R., Firdous, S. (2010). Low temperature synthesis of fluorescent ZnO nanoparticles. Applied Surface Science, 257(5), 1756–1761. DOI: 10.1016/j.apsusc.2010.09.011
  32. Chu, S., Zhou, W., Zhang, C., Zheng, Y., Liu, Y., Liu, Y. (2020). Relationship between the structure and catalytic performance of MoS2 with different surfactant-assisted syntheses in the hydrodesulfurization reaction of 4,6-DMDBT. RSC Advances, 10(13), 7600–7608. DOI: 10.1039/c9ra08407j
  33. Liu, M.N., Li, Y.Z., Xie, Z.X., Hao, Q.Q., Luo, Q.X., Zhang, J., Chen, H., Dai, C., Ma, X. (2020). Organosilane surfactant-directed synthesis of hierarchical mordenite with enhanced catalytic performance in the alkylation of benzene with 1-dodecene. New J. Chem. 44:16638–16644
  34. Zhili, W., Pan, L., Jiuhui, H., Chun, C., Shoucong, N., Akihiko, H., Takeshi, F., Mingwei, C. (2017). Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Natural communicationommunication, 10(3), 33–43
  35. Sabarish, R., Unnikrishnan, G. (2020). A novel anionic surfactant as template for the development of hierarchical ZSM-5 zeolite and its catalytic performance. Journal of Porous Materials, 27(3), 691–700. DOI: 10.1007/s10934-019-00852-5
  36. Hajimirzaee, S., Chansai, S., Hardacre, C., Banks, C.E., Doyle, A.M. (2019). Effects of surfactant on morphology, chemical properties and catalytic activity of hydroxyapatite. Journal of Solid State Chemistry, 276, 345–351. DOI: 10.1016/j.jssc.2019.05.031
  37. Ulfa, M., Nur, C., Amalia, N. (2023). Fine-tuning mesoporous silica properties by a dual-template ratio as TiO2 support for dye photodegradation booster. Heliyon, 9(6), e16275. DOI: 10.1016/j.heliyon.2023.e16275
  38. Goddard, A.R., Apebende, E.A., Lentz, J.C., Carmichael, K., Taresco, V., Irvine, D.J., Howdle, S.M. (2021). Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media. Polymer Chemistry, 12(20), 2992–3003. DOI: 10.1039/d1py00415h
  39. Quinson, J., Kunz, S., Arenz, M. (2023). Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catalysis, 13(7), 4903–4937. DOI: 10.1021/acscatal.2c05998
  40. Ulfa, M., Prasetyoko, D., Trisunaryanti, W., Bahruji, H., Fadila, Z.A., Sholeha, N.A. (2022). The effect of gelatin as pore expander in green synthesis mesoporous silica for methylene blue adsorption. Scientific Reports, 12(1), 1–12. DOI: 10.1038/s41598-022-19615-5
  41. Ulfa, M., Prasetyoko, D., Bahruji, H. (2021). Hexagonal Flake- Like Hematite ( α -Fe 2 O 3 ) Prepared by Hybrid Pluronic F127-Gelatin as Eco-Friendly Template for Adsorption of Ibuprofen. 1–15
  42. Alshgari, R.A., Ujjan, Z.A., Shah, A.A., Bhatti, M.A., Tahira, A., Shaikh, N.M., Kumar, S., Ibupoto, M.H., Elhawary, A., Nafady, A., Vigolo, B., Ibhupoto, Z.H. (2022). ZnO Nanostructures Doped with Various Chloride Ion Concentrations for Efficient Photocatalytic Degradation of Methylene Blue in Alkaline and Acidic Media. Molecules, 27(24) DOI: 10.3390/molecules27248726
  43. Saad, A.M., Abukhadra, M.R., Abdel-Kader Ahmed, S., Elzanaty, A.M., Mady, A.H., Betiha, M.A., Shim, J.J., Rabie, A.M. (2020). Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. Journal of Environmental Management, 258, 110043. DOI: 10.1016/j.jenvman.2019.110043
  44. Akyüz, D. (2021). rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Optical Materials, 116(January), 111090. DOI: 10.1016/j.optmat.2021.111090
  45. Davis, K., Yarbrough, R., Froeschle, M., White, J., Rathnayake, H. (2019). Band gap engineered zinc oxide nanostructures: Via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Advances, 9(26), 14638–14648. DOI: 10.1039/c9ra02091h
  46. Negash, A., Mohammed, S., Weldekirstos, H.D., Ambaye, A.D., Gashu, M. (2023). Enhanced Photocatalytic Degradation of Methylene Blue Dye Using Eco-Friendly Synthesized rGO-ZnO Nanocomposites. Scientific Reports, 13(1), 22234. DOI: 10.1038/s41598-023-48826-7
  47. Ikram, M., Aslam, S., Haider, A., Naz, S., Ul-Hamid, A., Shahzadi, A., Ikram, M., Haider, J., Ahmad, S.O.A., Butt, A.R. (2021). Doping of Mg on ZnO Nanorods Demonstrated Improved Photocatalytic Degradation and Antimicrobial Potential with Molecular Docking Analysis. Nanoscale Research Letters, 16(1) DOI: 10.1186/s11671-021-03537-8

Last update:

No citation recorded.

Last update:

No citation recorded.