skip to main content

Harnessing Copper's Potential: A Review of Cu-Based Catalysts for Glycerol Conversion

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia

Received: 19 Jan 2025; Revised: 6 Mar 2025; Accepted: 7 Mar 2025; Available online: 9 Mar 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increasing depletion of fossil fuel reserves and environmental concerns have accelerated the search for sustainable alternatives, leading to the utilization of biodiesel as a renewable energy source. Glycerol, a key byproduct of biodiesel production, has been extensively investigated for conversion into value-added compounds such as lactic acid, acrylic acid, and 1,2-propanediol (1,2-PDO). Copper-based catalysts have gained popularity due to their low cost, high catalytic efficiency, and environmental friendliness. This review examines various copper-based catalytic systems for glycerol conversion through key processes such as hydrogenolysis, oxidation, steam reforming, and dehydration. The work focuses on how Cu-based bimetallic catalysts, such as Cu-Ni, Cu-Co, and Cu-Zn, improve reaction selectivity and conversion rates via synergistic interactions, better metal dispersion, and optimized redox properties. Furthermore, new catalyst manufacturing methods, such as ammonia evaporation, hydrothermal, and ion exchange approaches, have shown improved stability and reusability. The findings show that Cu-based catalysts successfully facilitate high glycerol conversion, with selective pathways favouring the generation of 1,2-PDO, lactic acid, and acrylic acid under optimal circumstances. However, catalyst deactivation caused by sintering and coke formation remains a concern. Future research should concentrate on creating stable, multifunctional catalysts, adding bio-derived support, and improving reaction conditions to increase long-term efficiency and industrial usability. This review emphasizes the potential of Cu-based catalytic systems in promoting glycerol valorisation and achieving a more sustainable chemical industry. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: copper-based catalysts; glycerol conversion; oxidation; oxidehydration; hydrogenolysis
Funding: Universitas Indonesia under contract Publication Grant Scheme 2025

Article Metrics:

  1. Suranovic, S. (2013). Fossil fuel addiction and the implications for climate change policy. Global Environmental Change, 23(3), 598–608. DOI: 10.1016/j.gloenvcha.2013.02.006
  2. Anitha, M., Kamarudin, S.K., Kofli, N.T. (2016). The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119–130. DOI: 10.1016/j.cej.2016.03.012
  3. Tan, Y.H., Abdullah, M.O., Nolasco-Hipolito, C. (2015). The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and engine performance. Renewable and Sustainable Energy Reviews, 47, 589–603. DOI: 10.1016/j.rser.2015.03.048
  4. Garlapati, V.K., Shankar, U., Budhiraja, A. (2016). Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9, 9–14. DOI: 10.1016/j.btre.2015.11.002
  5. Jiang, L.-Y., Tian, F.-M., Chen, X.-Y., Ren, X.-X., Feng, J.-J., Yao, Y., Zhang, L., Wang, A.-J. (2023). Cu2+-regulated one-pot wet-chemical synthesis of uniform PdCu nanostars for electrocatalytic oxidation of ethylene glycol and glycerol. Journal of Colloid and Interface Science, 649, 118–124. DOI: 10.1016/j.jcis.2023.06.044
  6. Gao, Z., Li, C., Shao, Y., Gao, G., Xu, Q., Tian, H., Zhang, S., Hu, X. (2021). Sequence of Ni/SiO2 and Cu/SiO2 in dual catalyst bed significantly impacts coke properties in glycerol steam reforming. International Journal of Hydrogen Energy, 46(52), 26367–26380. DOI: 10.1016/j.ijhydene.2021.05.140
  7. Huang, J., Zhang, J., Lu, S., Liang, Y., Xiao, F.-S. (2023). Pure silica Beta zeolite supported copper species for efficient hydrogenolysis of glycerol to 1, 2-propanediol. Biomass and Bioenergy, 174, 106818. DOI: 10.1016/j.biombioe.2023.106818
  8. Liu, S., Yu, Z., Wang, Y., Sun, Z., Liu, Y., Shi, C., Wang, A. (2021). Catalytic dehydration of glycerol to acrolein over unsupported MoP. Catalysis Today, 379, 132–140. DOI: 10.1016/j.cattod.2020.11.029
  9. Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., Sels, B.F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ. Sci., 6(5), 1415–1442. DOI: 10.1039/C3EE00069A
  10. Mäki-Arvela, P., Simakova, I.L., Salmi, T., Murzin, D.Yu. (2014). Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 114(3), 1909–1971. DOI: 10.1021/cr400203v
  11. Palacio, R., Torres, S., Lopez, D., Hernandez, D. (2018). Selective glycerol conversion to lactic acid on Co3O4/CeO2 catalysts. Catalysis Today, 302, 196–202. DOI: 10.1016/j.cattod.2017.05.053
  12. Tang, Z., Cao, H., Tao, Y., Heeres, H.J., Pescarmona, P.P. (2020). Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Applied Catalysis B: Environmental, 263, 118273. DOI: 10.1016/j.apcatb.2019.118273
  13. Feng, S., Takahashi, K., Miura, H., Shishido, T. (2020). One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions. Fuel Processing Technology, 197, 106202. DOI: 10.1016/j.fuproc.2019.106202
  14. Marques, F.L., Oliveira, A.C., Mendes Filho, J., Rodríguez-Castellón, E., Cavalcante, C.L., Vieira, R.S. (2015). Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Processing Technology, 138, 228–235. DOI: 10.1016/j.fuproc.2015.05.032
  15. Zhang, C., Wang, T., Liu, X., Ding, Y. (2016). Cu-promoted Pt/activated carbon catalyst for glycerol oxidation to lactic acid. Journal of Molecular Catalysis A: Chemical, 424, 91–97. DOI: 10.1016/j.molcata.2016.08.018
  16. Li, K.-T., Li, J.-Y., Li, H.-H. (2017). Conversion of glycerol to lactic acid over Cu–Zn–Al and Cu–Cr catalysts in alkaline solution. Journal of the Taiwan Institute of Chemical Engineers, 79, 74–79. DOI: 10.1016/j.jtice.2017.03.029
  17. Yin, H., Zhang, C., Yin, H., Gao, D., Shen, L., Wang, A. (2016). Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics. Chemical Engineering Journal, 288, 332–343. DOI: 10.1016/j.cej.2015.12.010
  18. Moreira, A.B.F., Bruno, A.M., Souza, M.M.V.M., Manfro, R.L. (2016). Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts. Fuel Processing Technology, 144, 170–180. DOI: 10.1016/j.fuproc.2015.12.025
  19. Zhang, J., Zhu, G., Wang, X., Mai, Y., Chen, J. (2023). Selective catalytic conversion of glycerol to lactic acid over Cu-ZnO@C catalysts. Catalysis Communications, 181, 106733. DOI: 10.1016/j.catcom.2023.106733
  20. Shrirame, B.S., Varma, A.R., Sahoo, S.S., Gayen, K., Maity, S.K. (2023). Techno-commercial viability of glycerol valorization to 1,2- and 1,3-propanediol using pinch technology. Biomass and Bioenergy, 177, 106943. DOI: 10.1016/j.biombioe.2023.106943
  21. Mahajani, S.M., Sharma, M.M., Sridhar, T. (2002). Direct hydration of propylene in liquid phase and under supercritical conditions in the presence of solid acid catalysts. Chemical Engineering Science, 57(22), 4877–4882. DOI: 10.1016/S0009-2509(02)00293-2
  22. Brazdil, J.F. (2017). A critical perspective on the design and development of metal oxide catalysts for selective propylene ammoxidation and oxidation. Applied Catalysis A: General, 543, 225–233. DOI: 10.1016/j.apcata.2017.06.022
  23. Beerthuis, R., Rothenberg, G., Shiju, N.R. (2015). Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 17(3), 1341–1361. DOI: 10.1039/C4GC02076F
  24. Katryniok, B., Paul, S., Dumeignil, F. (2013). Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, 3(8), 1819–1834. DOI: 10.1021/cs400354p
  25. Xiaobo, X.U., Jianping, L., Peilin, C. (2006). Advances in the research and development of acrylic acid production from biomass. Chinese Journal of Chemical Engineering, 14(4), 419–427. DOI: 10.1016/S1004-9541(06)60094-3
  26. Deleplanque, J., Dubois, J.-L., Devaux, J.-F., Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1), 351–358. DOI: 10.1016/j.cattod.2010.04.012
  27. Tambunan, M.L.P., Abdullah, I., Krisnandi, Y.K. (2024). One-pot glycerol conversion to acrylic acid catalyzed by Cu modified HY zeolite synthesized from natural resources and pro-analytical precursor. Carbon Resources Conversion, 7(1), 100188. DOI: 10.1016/j.crcon.2023.05.007
  28. Witsuthammakul, A., Sooknoi, T. (2012). Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Applied Catalysis A: General, 413–414, 109–116. DOI: 10.1016/j.apcata.2011.10.045
  29. Fu, C.P., She, Q.M., Tesser, R., Zhou, C.H. (2022). Cleaner one-pot transformation of glycerol to acrylic acid and 1, 2-propanediol over bifunctional Cu 2 O/montmorillonite catalysts without external oxygen and hydrogen. Catalysis Science & Technology, 12(21), 6495–6506. DOI: 10.1039/D1CY02359D
  30. Bagheri, S., Julkapli, N.M., Yehye, W.A. (2015). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41, 113–127. DOI: 10.1016/j.rser.2014.08.031
  31. Du, Y., Wang, C., Jiang, H., Chen, C., Chen, R. (2016). Insights into deactivation mechanism of Cu–ZnO catalyst in hydrogenolysis of glycerol to 1, 2-propanediol. Journal of Industrial and Engineering Chemistry, 35, 262–267. DOI: 10.1016/j.jiec.2016.01.002
  32. Saelee, T., Tapanya, T., Wangphon, C., Rittiruam, M., Miyake, T., Khemthong, P., Butburee, T., Limsoonthakul, P., Praserthdam, S., Praserthdam, P. (2022). Experimental and DFT investigations on enhanced stability found on Re-, Rh-, and Nb-promoted Pt/WOx/γ-Al2O3 catalyst during aqueous-phase glycerol hydrogenolysis. Fuel, 326 DOI: 10.1016/j.fuel.2022.125019
  33. Shan, J., Liu, H., Lu, K., Zhu, S., Li, J., Wang, J., Fan, W. (2020). Identification of the dehydration active sites in glycerol hydrogenolysis to 1, 2-propanediol over Cu/SiO2 catalysts. Journal of Catalysis, 383, 13–23. DOI: 10.1016/j.jcat.2019.12.032
  34. Zhou, J., Guo, L., Guo, X., Mao, J., Zhang, S. (2010). Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts. Green Chemistry, 12(10), 1835–1843. DOI: 10.1039/c0gc00058b
  35. Sun, D., Yamada, Y., Sato, S. (2014). Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol. Applied Catalysis A: General, 475, 63–68. DOI: 10.1016/j.apcata.2014.01.015
  36. Vila, F., López Granados, M., Ojeda, M., Fierro, J.L.G., Mariscal, R. (2012). Glycerol hydrogenolysis to 1,2-propanediol with Cu/γ-Al 2O3: Effect of the activation process. Catalysis Today, 187(1), 122–128. DOI: 10.1016/j.cattod.2011.10.037
  37. Hirunsit, P., Luadthong, C., Faungnawakij, K. (2015). Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/Al2O3: combined experiment and DFT investigation. RSC Advances, 5(15), 11188–11197. DOI: 10.1039/C4RA14698K
  38. Bienholz, A., Hofmann, H., Claus, P. (2011). Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst’s activity. Applied Catalysis A: General, 391(1), 153–157. DOI: 10.1016/j.apcata.2010.08.047
  39. Huang, Z., Cui, F., Kang, H., Chen, J., Xia, C. (2009). Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium. Applied Catalysis A: General, 366(2), 288–298. DOI: 10.1016/j.apcata.2009.07.017
  40. Zhu, S., Gao, X., Zhu, Y., Fan, W., Wang, J., Li, Y. (2015). A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science and Technology, 5(2), 1169–1180. DOI: 10.1039/c4cy01148a
  41. Azri, N., Irmawati, R., Nda-Umar, U.I., Saiman, M.I., Taufiq-Yap, Y.H. (2021). Effect of different supports for copper as catalysts on glycerol hydrogenolysis to 1,2-propanediol. Journal of King Saud University - Science, 33(4), 101417. DOI: 10.1016/j.jksus.2021.101417
  42. Azri, N., Irmawati, R., Nda-Umar, U.I., Saiman, M.I., Taufiq-Yap, Y.H., Abdulkareem-Alsultan, G. (2024). Effect of Bimetallic Co-Cu/Dolomite Catalyst on Glycerol Conversion to 1,2-Propanediol. Pertanika Journal of Science and Technology, 32(3), 1141–1159. DOI: 10.47836/pjst.32.3.09
  43. Mitta, H., Seelam, P.K., Ojala, S., Keiski, R.L., Balla, P. (2018). Tuning Y-zeolite based catalyst with copper for enhanced activity and selectivity in vapor phase hydrogenolysis of glycerol to 1,2-propanediol. Applied Catalysis A: General, 550, 308–319. DOI: 10.1016/j.apcata.2017.10.019
  44. de Andrade, T.S., Souza, M.M.V.M., Manfro, R.L. (2020). Hydrogenolysis of glycerol to 1,2-propanediol without external H2 addition in alkaline medium using Ni-Cu catalysts supported on Y zeolite. Renewable Energy, 160, 919–930. DOI: 10.1016/j.renene.2020.06.060
  45. Li, X., Xiang, M., Wu, D. (2019). Hydrogenolysis of glycerol over bimetallic CuNi catalysts supported on hierarchically porous SAPO-11 zeolite. Catalysis Communications, 119, 170–175. DOI: 10.1016/j.catcom.2018.11.004
  46. Niu, L., Wei, R., Jiang, F., Zhou, M., Liu, C., Xiao, G. (2014). Selective hydrogenolysis of glycerol to 1,2-propanediol on the modified ultrastable Y-type zeolite dispersed copper catalyst. Reaction Kinetics, Mechanisms and Catalysis, 113(2), 543–556. DOI: 10.1007/s11144-014-0745-8
  47. Kant, A., He, Y., Jawad, A., Li, X., Rezaei, F., Smith, J.D., Rownaghi, A.A. (2017). Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta. Chemical Engineering Journal, 317, 1–8. DOI: 10.1016/j.cej.2017.02.064
  48. Pires, M.H.M., Passos, F.B., Xing, Y. (2023). Hydrogenolysis of glycerol over ZSM-5 supported ruthenium and copper catalysts: Structural study and effects in reaction. Catalysis Today, 419, 114161. DOI: 10.1016/j.cattod.2023.114161
  49. Liu, S., Yu, Z., Lu, C., Wang, Y., Sun, F., Sun, Z., Liu, Y., Shi, C., Wang, A. (2023). Copper carbide composite catalyst for hydrogenolysis of glycerol to 1, 2-propanediol. Fuel, 334, 126763. DOI: 10.1016/j.fuel.2022.126763
  50. Shozi, M.L., Dasireddy, V.D.B.C., Singh, S., Mohlala, P., Morgan, D.J., Iqbal, S., Friedrich, H.B. (2017). An investigation of Cu-Re-ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy and Fuels, 1(6), 1437–1445. DOI: 10.1039/C7SE00199A
  51. Montassier, C., Giraud, D., Barbier, J. (1988). Polyol conversion by liquid phase heterogeneous catalysis over metals. In: Studies in Surface Science and Catalysis. Elsevier, pp. 165–170
  52. Azri, N., Ramli, I., Nda-Umar, U.I., Shamsuddin, M.R., Saiman, M.I., Taufiq-Yap, Y.H. (2020). Copper-dolomite as effective catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of the Taiwan Institute of Chemical Engineers, 112, 34–51. DOI: 10.1016/j.jtice.2020.07.011
  53. Ten Dam, J., Hanefeld, U. (2011). Renewable chemicals: Dehydroxylation of glycerol and polyols. ChemSusChem 4, 1017–1034. DOI: 10.1002/cssc.201100162
  54. Mane, R.B., Kondawar, S.E., Niphadkar, P.S., Joshi, P.N., Patil, K.R., Rode, C. V (2012). Effect of preparation parameters of Cu catalysts on their physico-chemical properties and activities for glycerol hydrogenolysis. Catalysis Today, 198(1), 321–329. DOI: 10.1016/j.cattod.2012.05.051
  55. Roy, D., Subramaniam, B., Chaudhari, R. V (2010). Aqueous phase hydrogenolysis of glycerol to 1, 2-propanediol without external hydrogen addition. Catalysis Today, 156(1–2), 31–37. DOI: 10.1016/j.cattod.2010.01.007
  56. Mallesham, B., Sudarsanam, P., Reddy, B.V.S., Reddy, B.M. (2016). Development of cerium promoted copper–magnesium catalysts for biomass valorization: Selective hydrogenolysis of bioglycerol. Applied Catalysis B: Environmental, 181, 47–57. DOI: 10.1016/j.apcatb.2015.07.037
  57. Liu, X., Zou, Y., Jiang, J. (2023). Selective aerobic photocatalytic glycerol oxidation on Au/TiO2 with borate additives. Applied Catalysis A: General, 660, 119216. DOI: 10.1016/j.apcata.2023.119216
  58. Del Colle, V., Melle, G., Previdello, B.A.F., Feliu, J.M., Varela, H., Tremiliosi-Filho, G. (2022). The effect of Pt surface orientation on the oscillatory electro-oxidation of glycerol. Journal of Electroanalytical Chemistry, 926, 116934. DOI: 10.1016/j.jelechem.2022.116934
  59. Li, D., Zhao, X., Zhou, Q., Ding, B., Zheng, A., Peng, Q., Hou, Z. (2022). Vicinal hydroxyl group-inspired selective oxidation of glycerol to glyceric acid on hydroxyapatite supported Pd catalyst. Green Energy & Environment, 7(4), 691–703. DOI: 10.1016/j.gee.2020.11.018
  60. Li, J., Xiao, G., Gao, L., Xu, L., Wen, X., Li, Y. (2024). CuCo/Ti-SBA-15 Catalyst for Glycerol Selective Oxidation. Catalysis Letters, 155(1), 19. DOI: 10.1007/s10562-024-04839-z
  61. Zhou, C.H., Beltramini, J.N., Lin, C.X., Xu, Z.P., Lu, G.Q., Tanksale, A. (2011). Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts. Catalysis Science and Technology, 1(1), 111–122. DOI: 10.1039/c0cy00018c
  62. Xu, S., Xiao, Y., Zhang, W., Liao, S., Yang, R., Li, J., Hu, C. (2022). Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid. Chemical Engineering Journal, 428, 132555. DOI: 10.1016/j.cej.2021.132555
  63. Paredes-Quevedo, L.C., Carriazo, J.G., Velasquez, M. (2023). CuCo2O4 spinel supported on dealuminized metakaolinite for partial glycerol oxidation. Catalysis Communications, 178, 106676. DOI: 10.1016/j.catcom.2023.106676
  64. Xi, Z., Zhou, H., Liu, Y., Xu, C. (2023). CuO[sbnd]Co3O4 nanoparticle catalysts rich in oxygen vacancies toward upgrading anodic electro-oxidation of glycerol. Electrochimica Acta, 470. DOI: 10.1016/j.electacta.2023.143285
  65. Habibi, B., Delnavaz, N. (2016). Electrooxidation of glycerol on nickel and nickel alloy (Ni-Cu and Ni-Co) nanoparticles in alkaline media. RSC Advances, 6(38), 31797–31806. DOI: 10.1039/c5ra26006j
  66. Sankar, J., Onyeozili, E.N., Kalu, E.E. (2017). Oxidation of glycerol with unactivated electroless cunimop catalyst. ChemEngineering, 1(2), 1–14. DOI: 10.3390/chemengineering1020011
  67. Liu, S.-S., Sun, K.-Q., Xu, B.-Q. (2014). Specific Selectivity of Au-Catalyzed Oxidation of Glycerol and Other C3-Polyols in Water without the Presence of a Base. ACS Catalysis, 4(7), 2226–2230. DOI: 10.1021/cs5005568
  68. Wang, Y., Liu, W., Zhao, J., Wang, Z., Zhao, N. (2024). Oxidation of glycerol to dihydroxyacetone over highly stable Au catalysts supported on mineral-derived CuO-ZnO mixed oxide. Applied Catalysis A: General, 671, 119578. DOI: 10.1016/j.apcata.2024.119578
  69. Kaminski, P. (2021). The application of copper-gold catalysts in the selective oxidation of glycerol at acid and basic conditions. Catalysts, 11(1), 1–22. DOI: 10.3390/catal11010094
  70. Shen, L., Zhou, X., Wang, A., Yin, H., Yin, H., Cui, W. (2017). Hydrothermal conversion of high-concentrated glycerol to lactic acid catalyzed by bimetallic CuAu x (x= 0.01–0.04) nanoparticles and their reaction kinetics. RSC Advances, 7(49), 30725–30739. DOI: 10.1039/c7ra04415a
  71. Sobczak, I., Wolski, Ł. (2015). Au-Cu on Nb2O5 and Nb/MCF supports - Surface properties and catalytic activity in glycerol and methanol oxidation. Catalysis Today, 254, 72–82. DOI: 10.1016/j.cattod.2014.10.051
  72. Kapkowski, M., Bartczak, P., Korzec, M., Sitko, R., Szade, J., Balin, K., Lelątko, J., Polanski, J. (2014). SiO2-, Cu-, and Ni-supported Au nanoparticles for selective glycerol oxidation in the liquid phase. Journal of Catalysis, 319, 110–118. DOI: 10.1016/j.jcat.2014.08.003
  73. Ke, Y.H., Wang, X., Qin, H.Y., Liu, H., Yuan, H., Liu, C.L., Dong, W.S. (2020). Cu-Al composite oxides: A highly efficient support for the selective oxidation of glycerol to 1,3-dihydroxyacetone. New Journal of Chemistry, 44(42), 18173–18184. DOI: 10.1039/d0nj02967j
  74. Kaskow, I., Decyk, P., Sobczak, I. (2018). The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation. Applied Surface Science, 444, 197–207. DOI: 10.1016/j.apsusc.2018.02.285
  75. Liang, D., Gao, J., Wang, J., Chen, P., Wei, Y., Hou, Z. (2011). Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution. Catalysis Communications, 12(12), 1059–1062. DOI: 10.1016/j.catcom.2011.03.019
  76. Liu, Y., Zhang, B., Yan, D., Xiang, X. (2024). Recent advances in the selective oxidation of glycerol to value-added chemicals via photocatalysis/photoelectrocatalysis. Green Chemistry, 26, 2505–2524. DOI: 10.1039/D3GC03554A
  77. Silva, J.M., Ribeiro, L.S., Órfão, J.J.M., Soria, M.A., Madeira, L.M. (2019). Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regeneration. International Journal of Hydrogen Energy, 44(5), 2461–2473. DOI: 10.1016/j.ijhydene.2018.11.234
  78. Gallo, A., Pirovano, C., Marelli, M., Psaro, R., Dal Santo, V. (2010). Hydrogen Production by Glycerol Steam Reforming with Ru‐based Catalysts: A Study on Sn Doping. Chemical Vapor Deposition, 16(10‐12), 305–310. DOI: 10.1002/cvde.201006864
  79. Macedo, M.S., Kraleva, E., Ehrich, H., Soria, M.A., Madeira, L.M. (2022). Hydrogen production from glycerol steam reforming over Co-based catalysts supported on La2O3, AlZnOx and AlLaOx. International Journal of Hydrogen Energy, 47(78), 33239–33258. DOI: 10.1016/j.ijhydene.2022.07.236
  80. Wu, G., Li, S., Zhang, C., Wang, T., Gong, J. (2014). Glycerol steam reforming over perovskite-derived nickel-based catalysts. Applied Catalysis B: Environmental, 144, 277–285. DOI: 10.1016/j.apcatb.2013.07.028
  81. Sad, M.E., Duarte, H.A., Vignatti, C., Padró, C.L., Apesteguía, C.R. (2015). Steam reforming of glycerol: Hydrogen production optimization. International Journal of Hydrogen Energy, 40(18), 6097–6106. DOI: 10.1016/j.ijhydene.2015.03.043
  82. Thyssen, V. V., Maia, T.A., Assaf, E.M. (2015). Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction. Journal of the Brazilian Chemical Society, 26(1), 22–31. DOI: 10.5935/0103-5053.20140209
  83. Carrero, A., Calles, J.A., García-Moreno, L., Vizcaíno, A.J. (2017). Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu,Co,Cr) catalysts supported on SBA-15 silica. Catalysts, 7(2) DOI: 10.3390/catal7020055
  84. Polychronopoulou, K., Charisiou, N., Papageridis, K., Sebastian, V., Hinder, S., Dabbawala, A., Alkhoori, A., Baker, M., Goula, M. (2018). The effect of Ni addition onto a Cu-based ternary support on the H2 production over glycerol steam reforming reaction. Nanomaterials, 8(11). DOI: 10.3390/nano8110931
  85. Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Zhang, L., Luo, T., Tan, C. (2013). Renewable hydrogen production from steam reforming of glycerol by Ni–Cu–Al, Ni–Cu–Mg, Ni–Mg catalysts. International Journal of Hydrogen Energy, 38(9), 3562–3571. DOI: 10.1016/j.ijhydene.2013.01.042
  86. Dou, B., Wang, C., Song, Y., Chen, H., Xu, Y. (2014). Activity of Ni-Cu-Al based catalyst for renewable hydrogen production from steam reforming of glycerol. Energy Conversion and Management, 78, 253–259. DOI: 10.1016/j.enconman.2013.10.067
  87. Moogi, S., Nakka, L., Potharaju, S.S.P., Ahmed, A., Farooq, A., Jung, S.C., Rhee, G.H., Park, Y.K. (2021). Copper promoted Co/MgO: A stable and efficient catalyst for glycerol steam reforming. International Journal of Hydrogen Energy, 46(34), 18073–18084. DOI: 10.1016/j.ijhydene.2020.08.190
  88. Wang, Q., Ruan, W., Teng, Y., Ma, B., Zhang, X., Yuan, X., Li, Z., Jiang, W., Teng, F., Ibhadon, A.O. (2023). Boosting hydrogen production of uniform CuCo-ZIF nanododecahedrons by bimetal node and glycerol. Materials Today Chemistry, 28, 101359. DOI: 10.1016/j.mtchem.2022.101359
  89. Zhou, C.H., Zhao, H., Tong, D.S., Wu, L.M., Yu, W.H. (2013). Recent advances in catalytic conversion of glycerol. Catalysis Reviews, 55(4), 369–453. DOI: 10.1080/01614940.2013.816610
  90. Xiong, C., Yao, C. (2009). Preparation and application of acrylic acid grafted polytetrafluoroethylene fiber as a weak acid cation exchanger for adsorption of Er (III). Journal of Hazardous Materials, 170(2–3), 1125–1132. DOI: 10.1016/j.jhazmat.2009.05.089
  91. Nimlos, M.R., Blanksby, S.J., Qian, X., Himmel, M.E., Johnson, D.K. (2006). Mechanisms of glycerol dehydration. The Journal of Physical Chemistry A, 110(18), 6145–6156. DOI: 10.1021/jp060597q
  92. Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M.D., Trevisanut, C., Cavani, F., Nieto, J.M.L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58–65. DOI: 10.1016/j.cattod.2012.06.024
  93. Liu, L., Wang, B., Du, Y., Zhong, Z., Borgna, A. (2015). Bifunctional Mo3VOx/ H4SiW12O40/Al2O3 catalysts for one-step conversion of glycerol to acrylic acid: Catalyst structural evolution and reaction pathways. Applied Catalysis B: Environmental, 174, 1–12. DOI: 10.1016/j.apcatb.2015.02.032
  94. Kurniawan, A., Yin, S.T., Jian Li, D., Li, K.J., Chen, X.L., Huang, W.J., Zhao, P.Y., Liu, J.H., Zhou, C.H. (2024). Elucidating metal composition–coking relationships and coke formation pathways during gas-phase oxydehydration of glycerol over clay mineral-supported Mo-V-O catalysts. Applied Catalysis B: Environmental, 347. DOI: 10.1016/j.apcatb.2024.123766
  95. Dos Santos, M.B., Andrade, H.M.C., Mascarenhas, A.J.S. (2016). Reduced coke formation during the gas phase oxidative dehydration of glycerol over ferrierite zeolites synthesized in fluoride medium. Microporous and Mesoporous Materials, 223, 105–113. DOI: 10.1016/j.micromeso.2015.10.040
  96. Vargas, B.J., de Menezes Vicenti, J.R., da Silva, E.D., Pinto, A.H., Gorup, L.F., da Rosa, C.A., Mortola, V.B. (2023). Glycerol valorization: The effect of Cu on the HZSM5 catalyst structure and increased selectivity towards allyl alcohol. Chemical Engineering Research and Design, 196, 617–631. DOI: 10.1016/j.cherd.2023.06.061
  97. Suprun, W., Lutecki, M., Gläser, R., Papp, H. (2011). Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol. Journal of Molecular Catalysis A: Chemical, 342–343, 91–100. DOI: 10.1016/j.molcata.2011.04.020
  98. Possato, L., Cassinelli, W., Meyer, C., Garetto, T., Pulcinelli, S.H., Santilli, C., Martins, L. (2016). Thermal treatments of precursors of molybdenum and vanadium oxides and the formed MoxVyOz phases active in the oxidehydration of glycerol. Applied Catalysis A: General, 532, 1-11. DOI: 10.1016/j.apcata.2016.12.010
  99. Zhao, H., Zhou, C.H., Wu, L.M., Lou, J.Y., Li, N., Yang, H.M., Tong, D.S., Yu, W.H. (2013). Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated montmorillonite catalysts. Applied Clay Science, 74, 154–162. DOI: 10.1016/j.clay.2012.09.011
  100. Lauriol-Garbay, P., Millet, J.M.M., Loridant, S., Bellière-Baca, V., Rey, P. (2011). New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, 280(1), 68–76. DOI: 10.1016/j.jcat.2011.03.005
  101. Alhanash, A., Kozhevnikova, E.F., Kozhevnikov, I. V (2010). Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Applied Catalysis A: General, 378(1), 11–18. DOI: 10.1016/j.apcata.2010.01.043
  102. Basu, S., Shree, V., Sen, A.K. (2022). Role of cerium as a promoter and process optimization studies for dehydration of glycerol to acetol over copper chromite catalyst. Journal of Rare Earths, 40(1), 63–72. DOI: 10.1016/j.jre.2021.01.013
  103. Basu, S., Sen, A.K. (2020). Dehydration of glycerol with silica–phosphate-supported copper catalyst. Research on Chemical Intermediates, 46(7), 3545–3568. DOI: 10.1007/s11164-020-04161-4
  104. Sasaki, S., Kurniawan, E., Sato, K., Matsusaka, K., Kojima, T., Hara, T., Yamada, Y., Sato, S. (2024). Vapor-phase dehydration of glycerol to acetol over Cu/SiO2 prepared with organic additives. Applied Catalysis A: General, 671, 119561. DOI: 10.1016/j.apcata.2024.119561
  105. Ishikawa, S., Murayama, T., Katryniok, B., Dumeignil, F., Araque, M., Heyte, S., Paul, S., Yamada, Y., Iwazaki, M., Noda, N., Ueda, W. (2019). Influence of the structure of trigonal Mo-V-M3rd oxides (M3rd = -, Fe, Cu, W) on catalytic performances in selective oxidations of ethane, acrolein, and allyl alcohol. Applied Catalysis A: General, 584. DOI: 10.1016/j.apcata.2019.117151
  106. Sarkar, B., Pendem, C., Konathala, L.N.S., Tiwari, R., Sasaki, T., Bal, R. (2014). Cu nanoclusters supported on nanocrystalline SiO 2–MnO 2: a bifunctional catalyst for the one-step conversion of glycerol to acrylic acid. Chemical Communications, 50(68), 9707–9710. DOI: 10.1039/c4cc03842h

Last update:

No citation recorded.

Last update:

No citation recorded.