skip to main content

Screening Support of Bimetallic Ruthenium-Tin Catalysts for Aqueous Phase Hydrogenolysis of Furfuryl Alcohol to 1,5-Pentanediol

1Catalysis for Sustainable Energy and Environment (CATSuRe), Inorganic Materials and Catalysis (IMCat) Laboratory, Indonesia

2Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36,0 Banjarbaru 70714, Indonesia

3Department of Physics, Lambung Mangkurat University, Jl. A. Yani Km 36,0 Banjarbaru 70714, Indonesia

4 Department of Mechanical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35,0 Banjarbaru 70714, Indonesia

View all affiliations
Received: 19 Feb 2025; Revised: 9 Apr 2025; Accepted: 9 Apr 2025; Available online: 10 Apr 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The selective aqueous phase hydrogenolysis of furfuryl alcohol (FFalc) to 1,5-pentanediol (1,5-PeD) using supported bimetallic ruthenium-tin (Ru-Sn) catalysts on various metal oxide supports (e.g., TiO2, ZnO, ZrO2, Nb2O5, g-Al2O3) and its combination were investigated systematically. The catalysts were prepared via coprecipitation-hydrothermal at 150 oC for 24 h, followed by reduction with H2 at 400 oC for 2 h. Supported Ru-Sn on TiO2(A), g-Al2O3, and ZrO2 catalysts exhibited higher yield of 1,5-PeD (55-69%) than that other catalysts at 180 oC, H2 10-30 bar for 3-5 h. However, those supported catalysts showed poor recyclability after the first reaction run, and therefore further examination on g-Al2O3 supported Ru-Sn was performed. The Ru-Sn catalyst supported on g-Al2O3-metal oxide composites (metal oxides: ZrO2, TiO2(A), TiO2(R), ZnO, Nb2O5, and C) afforded higher FFalc conversion and yield of 1,5-PeD than that of unmodified g-Al2O3 at 180 oC, H2 30 bar for 3 h. Among them, the Ru-Sn/g-Al2O3-TiO2(A) (33%) catalyst could afford the highest yield of 1,5-PeD (80%) at 99% conversion FFalc at 180 oC, H2 10 bar for 5 h. Around 95% of this catalyst can be recycled after the second reaction run and the activity can be restored to initial after reactivation with H2 at 400 oC for 2 h with a 69% yield of 1,5-PeD at 97% FFalc conversion. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bimetallic Ru-Sn; aqueous phase hydrogenolysis; furfuryl alcohol; 1,5-pentanediol
Funding: LPDP-BRIN under contract 79/IV/KS/11/2022; DRPTM under contract 056/E5/PG.02.00.PL/2024; Universitas Lambung Mangkurat under contract 1374.95/UN8.2/PG/2024

Article Metrics:

  1. Gérardy, R., Debecker, D.P., Estager, J., Luis, P., Monbaliu, J.C.M. (2020). Continuous Flow Upgrading of Selected C2-C6 Platform Chemicals Derived from Biomass. Chemical Reviews, 120(15), 7219–7347. DOI: 10.1021/acs.chemrev.9b00846
  2. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 19(13), 2876–2924. DOI: 10.1039/c7gc00620a
  3. Xu, C., Paone, E., Rodríguez-Padrón, D., Luque, R., Mauriello, F. (2020). Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 49(13), 4273–4306. DOI: 10.1039/d0cs00041h
  4. Sun, X., Wen, B., Wang, F., Zhang, W., Zhao, K., Liu, X. (2024). Research advances on the catalytic conversion of biomass-derived furfural into pentanediols. Catalysis Communications, 187, 106864. DOI: 10.1016/j.catcom.2024.106864
  5. Tomishige, K., Honda, M., Sugimoto, H., Liu, L., Yabushita, M., Nakagawa, Y. (2024). Recent progress on catalyst development for ring-opening C-O hydrogenolysis of cyclic ethers in the production of biomass-derived chemicals. Carbon Neutrality, 3(1), 17. DOI: 10.1007/s43979-024-00090-y
  6. Xu, W., Wang, H., Liu, X., Ren, J., Wang, Y., Lu, G. (2011). Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications, 47(13), 3924–3926. DOI: 10.1039/c0cc05775d
  7. Tong, T., Xia, Q., Liu, X., Wang, Y. (2017). Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability. Catalysis Communications, 101, 129–133. DOI: 10.1016/j.catcom.2017.08.005
  8. Tong, T., Liu, X., Guo, Y., Norouzi Banis, M., Hu, Y., Wang, Y. (2018). The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. Journal of Catalysis, 365, 420–428. DOI: 10.1016/j.jcat.2018.07.023
  9. Liu, S., Amada, Y., Tamura, M., Nakagawa, Y., Tomishige, K. (2014). One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst. Green Chemistry, 16(2), 617. DOI: 10.1039/c3gc41335g
  10. Koso, S., Furikado, I., Shimao, A., Miyazawa, T., Kunimori, K., Tomishige, K. (2009). Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chemical Communications, (15), 2035–2037. DOI: 10.1039/b822942b
  11. Sun, D., Sato, S., Ueda, W., Primo, A., Garcia, H., Corma, A. (2016). Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 18(9), 2579–2597. DOI: 10.1039/c6gc00377j
  12. Li, X., Jia, P., Wang, T. (2016). Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catalysis, 6(11), 7621–7640. DOI: 10.1021/acscatal.6b01838
  13. Wijaya, H.W., Hara, T., Ichikuni, N., Shimazu, S. (2018). Hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over a nickel-yttrium oxide catalyst containing ruthenium. Chemistry Letters, 47(1), 103–106. DOI: 10.1246/cl.170920
  14. Tan, J., Su, Y., Hai, X., Huang, L., Cui, J., Zhu, Y., Wang, Y., Zhao, Y. (2022). Conversion of furfuryl alcohol to 1,5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. Molecular Catalysis, 526, 112391. DOI: 10.1016/j.mcat.2022.112391
  15. Liu, H., Huang, Z., Zhao, F., Cui, F., Li, X., Xia, C., Chen, J. (2016). Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a non-precious Cu-Mg3AlO4.5 bifunctional catalyst. Catalysis Science and Technology, 6(3), 668–671. DOI: 10.1039/c5cy01442e
  16. Barranca, A., Gandarias, I., Arias, P.L., Agirrezabal-Telleria, I. (2023). One-Pot Production of 1,5-Pentanediol from Furfural Through Tailored Hydrotalcite-Based Catalysts. Catalysis Letters, 153(7), 2018–2025. DOI: 10.1007/s10562-022-04144-7
  17. Fu, X., Ren, X., Shen, J., Jiang, Y., Wang, Y., Orooji, Y., Xu, W., Liang, J. (2021). Synergistic catalytic hydrogenation of furfural to 1,2-pentanediol and 1,5-pentanediol with LDO derived from CuMgAl hydrotalcite. Molecular Catalysis, 499(July 2020), 111298. DOI: 10.1016/j.mcat.2020.111298
  18. Shen, Q., Li, Y., Wang, F., Zhang, X., Zhang, Z., Zhang, Z., Yang, Y., Bing, C., Fan, X., Zhang, J., He, X. (2024). Controlled targeted conversion of furfural to 1,5-pentanediol or 2-methylfuran over Ni/CoAlOx catalyst. Molecular Catalysis, 556, 113919. DOI: 10.1016/j.mcat.2024.113919
  19. Peng, J., Zhang, D., Wu, Y., Wang, H., Tian, X., Ding, M. (2023). Selectivity control of furfuryl alcohol upgrading to 1,5-pentanediol over hydrotalcite-derived Ni-Co-Al catalyst. Fuel, 332, 126261. DOI: 10.1016/j.fuel.2022.126261
  20. Liu, D., Fu, J., Wang, J., Zhu, X., Xu, J., Zhao, Y., Huang, J. (2024). Interfacial synergy within bimetallic oxide promotes selective hydrogenolysis of furfuryl alcohol to 1,5-pentanediol. Applied Surface Science, 642, 158571. DOI: 10.1016/j.apsusc.2023.158571
  21. Upare, P.P., Kim, Y., Oh, K.R., Han, S.J., Kim, S.K., Hong, D.Y., Lee, M., Manjunathan, P., Hwang, D.W., Hwang, Y.K. (2021). A Bimetallic Ru3Sn7Nanoalloy on ZnO Catalyst for Selective Conversion of Biomass-Derived Furfural into 1,2-Pentanediol. ACS Sustainable Chemistry and Engineering, 9(51), 17242–17253. DOI: 10.1021/acssuschemeng.1c05322
  22. Nimbalkar, A.S., Oh, K.-R., Hong, D.-Y., Park, B.G., Lee, M., Hwang, D.W., Awad, A., Upare, P.P., Han, S.J., Hwang, Y.K. (2024). Continuous production of 1,2-pentanediol from furfuryl alcohol over highly stable bimetallic Ni–Sn alloy catalysts. Green Chemistry, 26(22), 11164–11176. DOI: 10.1039/D4GC02757D
  23. Brentzel, Z.J., Barnett, K.J., Huang, K., Maravelias, C.T., Dumesic, J.A., Huber, G.W. (2017). Chemicals from Biomass: Combining Ring-Opening Tautomerization and Hydrogenation Reactions to Produce 1,5-Pentanediol from Furfural. ChemSusChem, 10(7), 1351–1355. DOI: 10.1002/cssc.201700178
  24. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chemistry Letters, 41(8), 769–771. DOI: 10.1246/cl.2012.769
  25. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of nanoporous Ni-Sn alloy and application for chemoselective hydrogenation of furfural to furfuryl alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9(1), 53–59. DOI: 10.9767/bcrec.9.1.5529.53-59
  26. Rodiansono, R., Astuti, M.D., Mujiyanti, D.R., Santoso, U.T., Shimazu, S. (2018). Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 445, 52–60. DOI: 10.1016/j.mcat.2017.11.004
  27. Rodiansono, R., Astuti, M.D., Husain, S., Nugroho, A., Sutomo, S. (2019). Selective conversion of 2-methylfuran to 1,4-pentanediol catalyzed by bimetallic Ni-Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 529–541. DOI: 10.9767/bcrec.14.3.4347.529-541
  28. Rodiansono, R., Azzahra, A.S., Ansyah, P.R., Husain, S., Shimazu, S. (2023). Rational design for the fabrication of bulk Ni 3 Sn 2 alloy catalysts for the synthesis of 1,4-pentanediol from biomass-derived furfural without acidic co-catalysts. RSC Advances, 13(31), 21171–21181. DOI: 10.1039/D3RA03642A
  29. Rodiansono, R., Astuti, M.D., Mustikasari, K., Husain, S., Ansyah, P.R., Hara, T., Shimazu, S. (2022). Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni-Sn alloy catalysts. RSC Advances, 12(1), 241–250. DOI: 10.1039/d1ra06135f
  30. Rodiansono, R., Azzahra, A.S., Santoso, U.T., Mikrianto, E., Suarso, E., Sembiring, K.C., Adilina, I.B., Sunnardianto, G.K., Afandi, A. (2025). Highly efficient and selective aqueous phase hydrogenolysis of furfural to 1,5-pentanediol using bimetallic Ru–SnOx /γ-Al 2 O 3 catalysts. Catalysis Science & Technology, 15(3), 808–821. DOI: 10.1039/D4CY01138D
  31. Azzahra, A.S., Annisa, N., Rodiansono, R., Trisno Santoso, U., Eko Sanjaya, R., Suarsa, E. (2025). Effect of Charcoal-Doping on The Yield of 1,5-Pentanediol and Reusability in Ru-Sn/g-Al2O3-Charcoal Catalysts. In: 1st ICWSDGs2024. AIP Conference Proceedings, pp. xxx–xxx
  32. Thea, S.D.B., Azzahra, A.S., Ridho Ansyari, M., Mikrianto, E., Rodiansono, R., Eko Sanjaya, R., Razi Ansyah, P. (2025). Selective Conversion of Furfuryl Alcohol to 1,5-Pentanediol Over Ru-Sn/γ-Al2O3-TiO2 : Effect of Calcination Temperature of γ-Al2O3-TiO2. In: 1st ICWDGs2024. AIP Conference Proceedings, p. xxx
  33. Azzahra, A.S., Dewi, H.P., Mikrianto, E., Sembiring, K.C., Sunnardianto, G.K., Nata, I.F., Rodiansono, R., Jayanudin, J. (2023). Bimetallic Ru-Sn as Effective Catalysts for the Selective Hydrogenation of Biogenic Platform Chemicals at Room Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 18(4), 700–712. DOI: 10.9767/bcrec.20067
  34. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Dordrecht: Springer Netherlands
  35. Shen, X., Garces, L.-J., Ding, Y., Laubernds, K., Zerger, R.P., Aindow, M., Neth, E.J., Suib, S.L. (2008). Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses. Applied Catalysis A: General, 335(2), 187–195. DOI: 10.1016/j.apcata.2007.11.017
  36. Kellner, C., Bell, A.T. (1982). Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 75(2), 251–261. DOI: 10.1016/0021-9517(82)90207-X
  37. Khaja Masthan, S., Rao, R., Chary, V.R., Rao, V., Rao, K. (1994). Influence of metal loading and temperature on hydrogen chemisorption and hydrogenation activity of Ru/gamma-Al2O3 catalysts. Indian Journal of Chemistry, 33, 26–32
  38. Gueye, I., Kim, J., Kumara, L.S.R., Yang, A., Seo, O., Chen, Y., Song, C., Hiroi, S., Kusada, K., Kobayashi, H., Kitagawa, H., Sakata, O. (2019). Investigation of selective chemisorption of fcc and hcp Ru nanoparticles using X-ray photoelectron spectroscopy analysis. Journal of Catalysis, 380, 247–253. DOI: 10.1016/j.jcat.2019.10.004
  39. Li, X., Deng, Q. (2023). Review on Metal–Acid Tandem Catalysis for Hydrogenative Rearrangement of Furfurals to C5 Cyclic Compounds. Transactions of Tianjin University, 29(5), 347–359. DOI: 10.1007/s12209-023-00367-w
  40. Luo, Z., Bing, Q., Kong, J., Liu, J.Y., Zhao, C. (2018). Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science and Technology, 8(5), 1322–1332. DOI: 10.1039/c8cy00037a
  41. Wang, J., Chernavskii, P.A., Wang, Y., Khodakov, A.Y. (2013). Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation. Fuel, 103, 1111–1122. DOI: 10.1016/j.fuel.2012.07.055
  42. Khandan, N., Kazemeini, M., Aghaziarati, M. (2008). Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Applied Catalysis A: General, 349(1–2), 6–12. DOI: 10.1016/j.apcata.2008.07.029

Last update:

No citation recorded.

Last update:

No citation recorded.