skip to main content

Nigella Sativa-mediated Synthesis of BiVO4/g-C3N4 Composites for the Removal of Methylene Blue Dye

Chemistry Department, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, 53122, Indonesia

Received: 13 Feb 2025; Revised: 21 Apr 2025; Accepted: 22 Apr 2025; Available online: 25 Apr 2025; Published: 30 Aug 2025.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study investigates the synthesis and photocatalytic performance of BiVO4-Nigella Sativa/g-C3N4 composites for the degradation of methylene blue dye. The composites were synthesized using a coprecipitation method and characterized through various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) surface area analysis, and scanning electron microscopy (SEM) to determine their crystal structure, chemical composition, morphology, adsorption and photocatalytic abilities. A variation of mass ratios of BiVO4 to g-C3N4 of 1:2, 1:3, and 1:4 was used in this investigation. The photocatalytic test results indicated that the composite with a mass ratio of 1:2 achieved the highest methylene blue degradation, reaching 91.73%, which was primarily attributed to an adsorption activity of 81.12% and a photocatalytic degradation of 10.60%. The photocatalytic activity was significantly enhanced under alkaline conditions, particularly at pH levels between 9 and 10, which facilitated the formation of reactive oxygen species (ROS). The study highlights the synergistic effects of the BiVO4 and g-C3N4 combination, which promotes efficient charge transfer, reduces electron-hole recombination, and expands light absorption due to a decrease in the effective bandgap energy. Overall, the findings indicate that BiVO4-Nigella Sativa/g-C3N4 composites have considerable potential for application in wastewater treatment, particularly for the remediation of organic dye pollutants. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Photocatalysis; BiVO4; Nigella Sativa; g-C3N4; Methylene blue; Adsorption
Funding: Unsoed Research Grant under contract No. 27.157/UN23.37/PT.01.03/II/2023.

Article Metrics:

  1. Riapanitra, A., Setyaningtyas, T., Haryadinaru, G.H. Photodegradation of Methylene Blue Dye Using BiVO₄/g-C₃N₄ Composites under Visible Light Irradiation. Jurnal Kimia Sains dan Aplikasi, 27(8), 363–370. DOI: 10.14710/jksa.27.8.363-370
  2. Cai, H., Cheng, L., Chen, H., Dou, R., Chen, J., Zhao, Y., Li, F., Fang, Z. (2023). Facile phase control and photocatalytic performance of BiVO4 crystals for methylene blue degradation. International Journal of Environmental Research and Public Health, 20(4), 3093. DOI: 10.3390/ijerph20043093
  3. Ni, S., Fu, Z., Li, L., Ma, M., Liu, Y. (2022). Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649, 129475. DOI: 10.1016/j.colsurfa.2022.129475
  4. Mohamed, H.E.A., Sone, B.T., Khamlich, S., Coetsee-Hugo, E., Swart, H.C., Thema, T., Sbiaa, R., Dhlamini, M.S. (2021). Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue. Materials Today: Proceedings, 36, 328–335. DOI: 10.1016/j.matpr.2020.04.119
  5. Zhang, X., Li, M., Liu, C., Zhang, Z., Zhang, F., Liu, Q. (2021). Enhanced the efficiency of photocatalytic degradation of methylene blue by construction of Z-scheme g-C3N4/BiVO4 heterojunction. Coatings, 11(9), 1027. DOI: 10.3390/coatings11091027
  6. Mohamed, H.E.A., Sone, B.T., Dhlamini, M.S., Maaza, M. (2018). Bio-synthesis of BiVO4 Nanorods Using Extracts of Callistemon viminalis. MRS Advances, 3(42), 2479–2486. DOI: 10.1557/adv.2018.318
  7. Rahim, M.A., Shoukat, A., Khalid, W., Ejaz, A., Itrat, N., Majeed, I., Koraqi, H., Imran, M., Nisa, M.U., Nazir, A. (2022). A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of black seed (Nigella sativa). Foods, 11(18), 2826. DOI: 10.3390/foods11182826
  8. Elsayed, H., Mohamed, A., Afridi, S., Khalil, A.T., Zohra, T., Alam, M.M., Ikram, A., Shinwari, Z.K., Maaza, M. Phytosynthesis of BiVO4 nanorods using Hyphaene thebaica for diverse biomedical applications. AMB Express, 9, 200, 1-14. DOI: 10.1186/s13568-019-0923-1
  9. Zhu, B., Cheng, B., Fan, J., Ho, W., Yu, J. (2021). g‐C3N4‐based 2D/2D composite heterojunction photocatalyst. Small Structures, 2(12), 2100086. DOI: 10.1002/sstr.202100086
  10. Goktas, S., Goktas, A. (2021). A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds, 863, 158734. DOI: 10.1016/j.jallcom.2021.158734
  11. Mu, F., Xu, S., Li, M., Yang, Y., Chu, X., Cheng, Z., Guo, X., Xu, J., Dai, B., Lee, C.-H. (2024). Photocatalytic peroxydisulfate activation for dissolved organic matter degradation in eutrophic lake water using S-scheme BiVO4/g-C3N4 3D/2D heterojunction under visible light. Surfaces and Interfaces, 48, 104382. DOI: 10.1016/j.surfin.2024.104382
  12. Tran, T.-H., Le, P.-N.-M., Ngo, T.-H., Huynh, N.-D.-T., Oh, W.-C., Le, M.-V. (2024). An investigation on the visible light-driven Z-scheme BiVO4/g-C3N4 heterostructures: Performance, evaluation, and mechanism for dye and antibiotics degradation. Materials Today Communications, 40, 109373. DOI: 10.1016/j.mtcomm.2024.109373
  13. Shakir, I. (2024). Tungsten-doped BiVO4 and its composite with g-C3N4 for enhanced photocatalytic applications. Optical Materials, 150, 115214. DOI: 10.1016/j.optmat.2024.115214
  14. Akechatree, N., Rajendran, R., Rojviroon, T., Arumugam, P., Vasudevan, V., Sirivithayapakorn, S., Dhayalan, A., Wongpipun, P., Phetyim, N., Rojviroon, O. (2025). Development of Z-scheme BiVO4/g-C3N4/rGO heterojunction nanocomposite for enhanced photocatalytic degradation and antibacterial activity. Materials Research Bulletin, 181, 113119. DOI: 10.1016/j.materresbull.2024.113119
  15. Vo, T.-G., Kao, C.-C., Kuo, J.-L., Chiu, C., Chiang, C.-Y. (2020). Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate. Applied Catalysis B: Environmental, 278, 119303. DOI: 10.1016/j.apcatb.2020.119303
  16. Rathi, G., Siddiqui, S.I., Pham, Q., Nam, V.T. (2020). Nigella sativa seeds based antibacterial composites: A sustainable technology for water cleansing-A review. Sustainable Chemistry and Pharmacy, 18, 100332. DOI: 10.1016/j.scp.2020.100332
  17. Algethami, J.S., Hassan, M.S., Amna, T., Alqarni, L.S., Alhamami, M.A.M., Seliem, A.F. (2023). Bismuth vanadate decked polyaniline polymeric nanocomposites: The robust photocatalytic destruction of microbial and chemical toxicants. Materials, 16(9), 3314. DOI: 10.3390/ma16093314
  18. Yu, D., Xiong, Y., Wu, H., Yang, P., Shi, H., Huang, L., Wu, Y., Zhang, Y., Xiao, P. (2023). Chemical Bond-Modulated Interfacial Energy Band Structures of Heterojunctions for Efficient Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C, 127(5), 2340–2348. DOI: 10.1021/acs.jpcc.2c08448
  19. Devi, S., Kumar, S., Devi, J., Sharma, A., Kumar, A. (2023). Decoration of 1, 3 oxazole modified g-C3N4 by Bio-synthesized Ag nanoparticle for the photodegradation of pharmaceutical effluent: clotrimazole. Mater. Today Proc. Article In Press
  20. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H.A., Oza, R. (2020). A review on eco-friendly synthesis of BiVO4 nanoparticle and its eclectic applications. Advanced Journal of Science and Engineering, 1(4), 106–112. DOI: 10.22034/AJSE2014106
  21. Yu, Y., Huang, H. (2023). Coupled adsorption and photocatalysis of g-C3N4 based composites: material synthesis, mechanism, and environmental applications. Chemical Engineering Journal, 453, 139755. DOI: 10.1016/j.cej.2022.139755
  22. Sharma, K., Kumar, A., Ahamad, T., Alshehri, S.M., Singh, P., Thakur, S., Van Le, Q., Wang, C., Huynh, T.-T., Nguyen, V.-H. (2022). Improving the redox performance of photocatalytic materials by cascade-type charge transfer: a review. Environmental Chemistry Letters, 20(5), 2781–2795. DOI: 10.1007/s10311-022-01466-1
  23. Majdoub, M., Anfar, Z., Amedlous, A. (2020). Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications. ACS Nano, 14(10), 12390–12469. DOI: 10.1021/acsnano.0c06116
  24. Ong, W.-J., Shak, K.P.Y. (2020). 2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar RRL, 4(8), 2000132. DOI: 10.1002/solr.202000132
  25. Huang, X., Shen, T., Zhang, T., Qiu, H., Gu, X., Ali, Z., Hou, Y. (2020). Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. Advanced Energy Materials, 10(11), 1900375. DOI: 10.1002/aenm.201900375
  26. Zhan, W., Yuan, Y., Sun, L., Yuan, Y., Han, X., Zhao, Y. (2019). Hierarchical NiO@N-Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution. Small, 15(22), 1901024. DOI: 10.1002/smll.201901024
  27. Sharma, K., Vaya, D., Prasad, G., Surolia, P.K. (2023). Photocatalytic process for oily wastewater treatment: A review. International Journal of Environmental Science and Technology, 20(4), 4615–4634. DOI: 10.1007/s13762-021-03874-2
  28. Wen, Y., Wang, Z., Cai, Y., Song, M., Qi, K., Xie, X. (2022). S-scheme BiVO4/CQDs/β-FeOOH photocatalyst for efficient degradation of ofloxacin: Reactive oxygen species transformation mechanism insight. Chemosphere, 295, 133784. DOI: 10.1016/j.chemosphere.2022.133784
  29. Dong, J., Zhang, Y., Hussain, M.I., Zhou, W., Chen, Y., Wang, L.-N. (2021). g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 12(1), 121. DOI: 10.3390/nano12010121
  30. Bazgir, H., Issaabadi, Z., Arabi, H. (2023). Green Nanomaterials as Photocatalyst/Catalyst: Exploration of Properties. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Springer, pp. 973–1003. DOI: 10.1007/978-3-031-16101-8_20
  31. Zulkarnain, Hakim, Y.M., Melwita, E., Mohadi, R. (2024). The Effects of Hydrothermal Temperatures on ZnO-Bentonite Composite Synthesis on Adsorption and Photodegradation of Methylene Blue Dye. Science and Technology Indonesia, 9(4), 1033–1041. DOI: 10.26554/sti.2024.9.4.1033-1041
  32. Remlalfaka, W., Murugesan, C., Anantharamaiah, P.N., Prabu, N.M. (2021). Fabrication of magnetically recoverable BiVO4/NiFe2O4 composites for the photocatalytic degradation of methylene blue. Ceramics International, 47(8), 11526–11535. DOI: 10.1016/j.ceramint.2020.12.281
  33. Nadimi, M., Ziarati Saravani, A., Aroon, M.A., Ebrahimian Pirbazari, A. (2019). Photodegradation of Methylene Blue by a Ternary Magnetic TiO2/Fe3O4/Graphene Oxide Nanocomposite under Visible Light. Materials Chemistry and Physics, 225, 464–474. DOI: 10.1016/j.matchemphys.2018.11.029
  34. Liaqat, M., Munir, R.M., Maryam, I., Iqbal, T., Afsheen, S., Nabi, A.G., Khan, R.R.M., El-marghany, A., Warad, I., Basit, A. (2024). Synthesis and Characterization of WO3/BiVO4/Graphene Ternary Nanocomposites for the Photodegradation of Methlyene Blue and Tetracycline. Materials Chemistry and Physics, 320(May), 129465. DOI: 10.1016/j.matchemphys.2024.129465
  35. Waheed, Z., Ghazanfar, S., Usman, M., Asif, H.M., Tariq, M., Mahmood, K., Haider, A., Sirajuddin, M. (2023). Synthesis and Characterization of Ternary Composite g-C3N4-WO3/rGO for Photocatalytic Activity in Degradation of Methylene Blue. Bulletin of the Chemical Society of Ethiopia, 37(5), 1123–1131. DOI: 10.4314/bcse.v37i5.5

Last update:

No citation recorded.

Last update:

No citation recorded.