skip to main content

Low Temperature Synthesis of Biodiesel via Heterogeneous Potassium-Alumina Catalyst

1Department of Bioenergy and Chemurgy, Institut Teknologi Bandung, Sumedang, 45363, Indonesia

2Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia

3Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia

Received: 7 Feb 2025; Revised: 2 May 2025; Accepted: 2 May 2025; Available online: 4 May 2025; Published: 30 Aug 2025.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2025 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Indonesia, one of the world's largest producers of crude palm oil (CPO), is aiming to achieve a renewable energy mix target of 23% by 2025 through the implementation of a B35 policy, blending diesel with fatty acid methyl ester (FAME) derived from CPO transesterification. Traditionally, homogeneous catalysts are used in this process, but their sensitivity to free fatty acids reduces biodiesel yield. Therefore, heterogeneous catalysts are being developed to overcome this issue, contributing to sustainable biodiesel production. However, certain heterogeneous catalysts require high temperature, more methanol, longer reaction times, necessitating the exploration of more optimal catalyst options. This study introduces an approach by exploring the use of heterogeneous K2O/g-Al2O3 catalysts in biodiesel production from RBDPO under low-temperature conditions (40 °C), a significant reduction from the commonly operated temperature of near the boiling point of methanol at 60 °C. Utilizing KI and KNO3 as precursors, the effect on different catalyst precursor, temperatures and reaction time were examined. It was found that temperature has the highest effect on conversion. The transesterification process yielded biodiesel with FAME levels ranging from 95.84% to 98.17%, meeting the Indonesian National Standard (SNI 7182:2015) for biodiesel quality. The findings indicate that both KI and KNO3 precursors result in highly active K2O/g-Al2O3 catalysts, achieving high conversion at 40 °C within a 1-hour reaction time, thus demonstrating their effectiveness in low-temperature biodiesel synthesis. This low-temperature process has the potential to significantly reduce energy consumption in industrial biodiesel production. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Biodiesel; FAME yield; heterogeneous catalyst; K¬2O/γ-Al2O3 catalyst; low temperature synthesis
Funding: Center for Research and Community Services of ITB under contract P3MI Research Grant

Article Metrics:

  1. Sharma, Y.C., Singh, B. (2009). Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews, 13(6–7), 1646–1651. DOI: 10.1016/J.RSER.2008.08.009
  2. Szulczyk, K.R, McCarl, B.A. (2010). Market penetration of biodiesel. Renewable and Sustainable Energy Reviews, 14(8), 2426–2433. DOI: 10.1016/J.RSER.2010.05.008
  3. Zahra, A.C.A., Rusyda, I.A., Hizbiyati, A., Giovani, F., Zahara, N., Jiwandaru, B., Gunawan, D., Halim, G.A., Pratiwi, M., Istyami, A.N., Sihombing, A.V.R., Harimawan, A., Sasongko, D., Rizkiana, J. (2021). Novel Approach of Biodiesel Production Waste Utilization to Support Circular Economy in Biodiesel Industry. IOP Conference Series: Materials Science and Engineering, 1143(1), 012030. DOI: 10.1088/1757-899x/1143/1/012030
  4. Wirawan, S.S., Solikhah, M.D., Setiapraja, H., Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189, 113911. DOI: 10.1016/J.RSER.2023.113911
  5. Santosa, S. J. (2008). Palm oil boom in Indonesia: From plantation to downstream products and biodiesel. Clean - Soil, Air, Water, 36(5–6), 453–465. DOI: 10.1002/clen.200800039
  6. Kandasamy, R., Venkatesan, S.K., Uddin, M.I., Ganesan, S. (2020). Anaerobic biovalorization of leather industry solid waste and production of high value-added biomolecules and biofuels. Biovalorisation of Wastes to Renewable Chemicals and Biofuels, 3–25. DOI: 10.1016/B978-0-12-817951-2.00001-8
  7. Mahamuni, N.N., Adewuyi, Y.G. (2009). Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel- biodiesel blends, and blend adulteration with soy oil. Energy and Fuels, 23(7), 3773–3782. DOI: 10.1021/ef900130m
  8. Kwon, E.E., Yi, H., Jeon, Y.J. (2013). Mechanistic investigation into water tolerance of non-catalytic biodiesel conversion. Applied Energy, 112, 388–392. DOI: 10.1016/J.APENERGY.2013.06.038
  9. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. DOI: 10.1016/J.BIOTECHADV.2010.03.002
  10. Mandari, V., Devarai, S.K. (2021). Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Research, 15(2), 935–961. DOI: 10.1007/S12155-021-10333-W
  11. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E. (2007). Heterogeneous Catalysts for Biodiesel Production. Energy and Fuels, 22(1), 207–217. DOI: 10.1021/EF700250G
  12. Georgogianni, K.G., Katsoulidis, A.K., Pomonis, P.J., Manos, G., Kontominas, M.G. (2009). Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Processing Technology, 90(7–8), 1016–1022. DOI: 10.1016/j.fuproc.2009.03.002
  13. Yang, X.X., Wang, Y.T., Yang, Y.T., Feng, E.Z., Luo, J., Zhang, F., … Bao, G.R. (2018). Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Conversion and Management, 164, 112–121. DOI: 10.1016/J.ENCONMAN.2018.02.085
  14. Ferella, F., Mazziotti Di Celso, G., De Michelis, I., Stanisci, V., Vegliò, F. (2010). Optimization of the transesterification reaction in biodiesel production. Fuel, 89(1), 36–42. DOI: 10.1016/J.FUEL.2009.01.025
  15. Rashid, U., Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 87(3), 265–273. DOI: 10.1016/J.FUEL.2007.05.003
  16. Meher, L.C., Vidya Sagar, D., Naik, S.N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. DOI: 10.1016/J.RSER.2004.09.002
  17. Sharma, V., Hossain, A.K., Griffiths, G., Duraisamy, G., Thomas, J.J. (2022) Investigation on yield, fuel properties, ageing and low temperature flow of fish oil esters. Energy Conversion and Management: X, 14, 100217, DOI: 10.1016/j.ecmx.2022.100217
  18. Veitía-de-Armas, L., Reynel-Ávila, H.E., Bonilla-Petriciolet, A., Jáuregui-Rincón, J. (2024) Green solvent-based lipid extraction from guava seeds and spent coffee grounds to produce biodiesel: Biomass valorization and esterification/transesterification route, Industrial Crops and Products, 214, 118535. DOI: 10.1016/J.INDCROP.2024.118535
  19. Ngige, G.A., Ovuoraye, P.E., Igwegbe, C.A., Fetahi, E., Okeke, J.A., Yakubu, A.D., Onyechi, P.C. (2023) RSM optimization and yield prediction for biodiesel produced from alkali-catalytic transesterification of pawpaw seed extract: Thermodynamics, kinetics, and Multiple Linear Regression analysis, Digital Chemical Engineering, 6, 100066. DOI: 10.1016/J.DCHE.2022.100066
  20. Prins, R. (2020). On the structure of γ-Al2O3. Journal of Catalysis, 392, 336–346. DOI: 10.1016/J.JCAT.2020.10.010
  21. Xie, W., Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical, 255(1–2), 1–9. DOI: 10.1016/J.MOLCATA.2006.03.061
  22. Da Costa Evangelista, J.P., Gondim, A.D., Souza, L.Di, Araujo, A.S. (2016). Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 59, 887–894. DOI: 10.1016/j.rser.2016.01.061
  23. Baltrusaitis, J., Schuttlefield, J., Jensen, J.H., Grassian, V.H. (2007). FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water. Physical Chemistry Chemical Physics, 9(36), 4970–4980. DOI: 10.1039/b705189a
  24. Evangelista, J.P.C., Chellappa, T., Coriolano, A.C.F., Fernandes, V.J., Souza, L.D., Araujo, A.S. (2012). Synthesis of alumina impregnated with potassium iodide catalyst for biodiesel production from rice bran oil. Fuel Processing Technology, 104, 90–95. DOI: 10.1016/J.FUPROC.2012.04.028
  25. Zhu, J.H., Wang, Y., Chun, Y., Wang, X.S. (1998). Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY. Journal of the Chemical Society - Faraday Transactions, 94(8), 1163–1169. DOI: 10.1039/a708070k
  26. Singh, D., Yadav, S., Bharadwaj, N., Verma, R. (2020). Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: Influence of steam flow rate and temperature. International Journal of Hydrogen Energy, 45(41), 20843–20850. DOI: 10.1016/J.IJHYDENE.2020.05.168
  27. Hsieh, L.S., Kumar, U., Wu, J.C.S. (2010). Continuous production of biodiesel in a packed-bed reactor using shell–core structural Ca(C3H7O3)2/CaCO3 catalyst. Chemical Engineering Journal, 158(2), 250–256. DOI: 10.1016/J.CEJ.2010.01.025
  28. Marinković, M., Waisi, H., Blagojević, S., Zarubica, A., Ljupković, R., Krstić, A., & Janković, B. (2022). The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production. Fuel, 315, 123246. DOI: 10.1016/J.FUEL.2022.123246
  29. Wu, W., Zhu, M., Zhang, D. (2017). An experimental and kinetic study of canola oil transesterification catalyzed by mesoporous alumina supported potassium. Applied Catalysis A: General, 530, 166–173. DOI: 10.1016/J.APCATA.2016.11.029
  30. Xiao, Y., Gao, L., Xiao, G., & Lv, J. (2010). Kinetics of the transesterification reaction catalyzed by solid base in a fixed-bed reactor. Energy and Fuels, 24(11), 5829–5833. DOI: 10.1021/ef100966t
  31. Zanjani, N.G., Pirzaman, A.K., Yazdanian, E. (2020). Biodiesel production in the presence of heterogeneous catalyst of alumina: Study of kinetics and thermodynamics. International Journal of Chemical Kinetics, 52(7), 472–484. DOI: 10.1002/kin.21363
  32. Nježić, Z.B., Kostić, M.D., Marić, B.D., Stamenković, O.S., Šimurina, O.D., Krstić, J., Veljković, V.B. (2023) Kinetics and optimization of biodiesel production from rapeseed oil over calcined waste filter cake from sugar beet processing plant, Fuel, 334, 126581. DOI: 10.1016/J.FUEL.2022.126581

Last update:

No citation recorded.

Last update:

No citation recorded.