skip to main content

New Modeling Approaches for Ethylene Oxychlorination in Fluidized Bed Reactors: Industrial and Low Flow Rate Conditions

1Laboratory of Process Engineering, Computer Science and Mathematics, Department of Process Engineering, National School of Applied Sciences of Khouribga, Sultan Moulay Slimane University, Bd Béni Amir, BP 77, 25000, Khouribga, Morocco

2Laboratory of Materials, Processes, Environment and Quality (LMPEQ), National School of Applied Sciences of Safi, Cadi Ayyad University, Route Sidi Bouzid BP 63, 46000 Safi, Morocco

Received: 24 Apr 2024; Revised: 21 Jun 2024; Accepted: 23 Jun 2024; Available online: 27 Jun 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A simple model (Continuous Stirred-Tank Reactor) has been developed to predict the behavior of industrial ethylene oxychlorination fluidized beds operating in a turbulent regime. The approach showed good agreement both with results from industrial reactors and with those corresponding to the (Simple two phases-Plug bubble-Mixed flow emulsion approach) validated in the literature. For low flow rates, the use of the (Simple two phases - Plug bubble - Plug emulsion model) adapted to these conditions enabled us to highlight the location and extent of undesirable thermal hot spots for the process, and to propose actions to control them by acting on the temperature and/or on the feed gas flows. By comparing this model with the plug approach, the significant slowdown in ethylene conversion caused by resistance to mass transfer when feed flow rates are low is highlighted. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Supporting Information (SI) PDF
Keywords: Fluidized bed reactor; Bubble phase; Emulsion phase; Continuous Stirred Tank Reactor; Plug Reactor
Funding: Moroccan Ministry of Higher Education, Scientific Research and Innovation

Article Metrics:

  1. . Syed, I., Ray, S.D. (2014). Encyclopedia of Toxicology. (Third Edition).Bethesda, MD: Academic Press
  2. . Kang, S.G., Yun, K., Sung, R.S., Sang, D.K. (2010). 1,2-Dichloroethane production by two-step oxychlorination reactions in a fluidized bed reactor. Chemical Engineering Science, 65, 499 – 503. DOI: 10.1016/j.ces.2009.02.052
  3. . Khademi, M.H., Taghavi, A. (2017). Optimization of ethylene oxychlorination fluidized-bed reactor using Differential Evolution (DE) method. Scientia Iranica C, 24, 1253-1263. DOI: 10.24200/SCI.2017.4109
  4. . Moradi, Z., Farsi, M. (2020). Simulation of direct chlorination of ethylene in a two-phase reactor by coupling equilibrium, kinetic and population balance models. Chem. Prod. Process Model, 20200061, 1-13. DOI : 10.1515/cppm-2020-0061
  5. . Montebelli, A., Tronconi, E., Orsenigo, C., Ballarini, N. (2015). Kinetic and Modeling Study of the Ethylene Oxychlorination to 1,2- Dichloroethane in Fluidized-Bed Reactors. Industrial & Engineering Chemistry Research, 54, 9513-9524. DOI: 10.1021/acs.iecr.5b01456
  6. . Moreira, J.C.S., Pires, C.A.M. (2010). Modelling and Simulation of an Oxychlorination Reactor in a Fluidized Bed. The Canadian Journal Of Chemical Engineering, 88, 350-358. Doi : 10.1002/cjce.20281
  7. . Al-Zahrani, S.M., Aljodai, A.M., Wagialla, K.M. (2001). Modelling and simulation of 1,2-dichloroethane production by ethylene oxychlorination in fluidized-bed reactor. Chemical Engineering Science, 56, 621-626. DOI: 10.1016/S0009-2509(00)00268-2
  8. . Faghih, S.M., Kianfar, E. (2018). Modeling of Fluid Bed Reactor of Ethylene Di Chloride Production in Abadan Petrochemical Based on Three-Phase Hydrodynamic Model. International Journal of Chemical Reactor Engineering, 20180006, 1-14. DOI: 10.1515/ijcre-2018-0006
  9. . El Bazi, W., Bideq, M., El Abidi, A., Yadir, S., Ouartassi, B. (2022). Numerical study of a water gas shift fxed bed reactor operating at low pressures. Bull Chem Reaction Eng Catal, 17, 304–321. DOI: 10.9767/bcrec.17.2.13510.304-321
  10. . El Bazi, W., Bideq, M., Yadir, S., El Abidi, A. (2023). Efects of catalyst distribution, particle geometry, and process conditions on the behavior of a water gas shift reactor under moderate pressures: a modeling study. Reaction Kinetics, Mechanisms and Catalysis, 136, 1859-1890. DOI: 10.1007/s11144-023-02431-x
  11. . McAuley, K.B., Talblot, J.P., Harris, T.J. (1994). A comparaison of two-Phase and well-mixed models for fluidized-bed polyethylene reactors. Chemical Engineering Science, 49, 2035-2045. DOI: 10.1016/0009-2509(94)E0030-T
  12. . Mostoufi, N., Cui, H., Chaouki, J. (2001). A Comparison of Two- and Single-Phase Models for Fluidized-Bed Reactors. Ind. Eng. Chem. Res, 40, 5526-5532. Doi: 10.1021/ie010121n
  13. . Fernandes, F.A.N., Lona, L.M.F. (2001). Fluidized-bed reactor modeling for polyethylene production. Journal of Applied Polymer Science, 81, 321–332. DOI : 10.1002/app.1442
  14. . Lu, W., Teng, L., Xiao, W. (2003). Theoretical Analysis of Fluidized-Bed Reactor for Dimethyl Ether Synthesis from Syngas. Int. J. Chem. React. Eng, 1, 1-10. Doi: 10.2202/1542-6580.1086
  15. . Shaofen, L. (2016). Reaction Engineering. Edition. Butterworth-Heinemann
  16. . Wagialla, K.M., Elnashaie, S. S. E. H. (1991). Fluidized-Bed Reactor for Methanol Synthesis. A Theoretical Investigation. Ind. Eng. Chem. Res,30, 2298-2308. DOI: 10.1021/ie00058a009
  17. . Fakeeha, A.H., Wagialla, K.M., AI-Shriahy, F.A. (1992). Modelling and Simulation of Acrylonitrile Synthesis from Propylene Using Fluidized Bed Technology. J. King Saud Univ, 4, 127-142. DOI: 10.1016/S1018-3639(18)30560-9
  18. . Jafari, R., Sotudeh-Gharebagh, R., Mostoufi, N. (2004). Modular Simulation of Fluidized Bed Reactors. Chem. Eng. Technol, 27, 123-129. DOI: 10.1002/ceat.200401908
  19. . Hamzehei, M., Rahimzadeh, H., Ahmadi, G. (2010). Computational and Experimental Study of Heat Transfer and Hydrodynamics in a 2D Gas-Solid Fluidized Bed Reactor. Ind. Eng. Chem. Res, 49, 5110–5121. Doi: 10.1021/ie900510a
  20. . Singh, R.I., Brink, A., Hupa, M. (2013). CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52, 585-614. DOI: 10.1016/j.applthermaleng.2012.12.017
  21. . Julián, I., Herguido, J., Menéndez, M. (2014). CFD model prediction of the Two-Section Two-Zone Fluidized Bed Reactor (TS-TZFBR). Hydrodynamics, 248, 352-362. DOI: 10.1016/j.cej.2014.03.028
  22. . Wachi, S., Asai, Y. (1994). Kinetics of 1,2 Dichloroethane formation from ethylene and cupric chloride. Industrial Engineering and Chemistry Research, 33, 259-264. DOI: 10.1021/IE00026A013
  23. . Carrubbba, R.V., Spencer, J.L. (1970). Kinetics of the Oxychlorination of Ethylene. Ind. Eng. Chern. Process Des. Develop, 9, 414-419. DOI: 10.1021/I260035A009
  24. . Farsi, M., Salimi, M. (2021). Modeling and Optimization of Ethylene Oxychlorination Fluidized Bed Reactor in Arvand Petrochemical Complex. Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI), 40, 213-224. DOR: 20.1001.1.10227768.1400.40.3.18.7
  25. . Junsittiwate, R., Kodchakong, A., Srinophakun, T. R. (2018). Ethylene Dichloride Production by Oxychlorination in a Fluidized Bed Reactor with CFD Model. Asian Journal of Applied Sciences, 6, 245-258. DOI: 10.24203/ajas.v6i5.5506
  26. . Botero, A.M., Grace, J.R., Elnashaie, S.S.E.H., Lim, C.J. (2009). Advances in Modeling of Fluidized-Bed Catalytic Reactors: A Comprehensive Review. Chem. Eng. Comm, 196, 1375–1405. DOI: 10.1080/00986440902938709
  27. . Toei, R., Oichi, M., Hayashi, H., Kubo, K., Yanagida, T., Mastuno, R. (1977). Hydrogenation of ethylene in two-dimensional gas-solid fluidized bed with perforated plate. Journal Of Chemical Engineering Of Japan, 10, 307-313. DOI: 10.1252/jcej.10.307
  28. . Davidson, J.F. (1991). Communication, The Two-phase Theory of Fluidization: Successes and Opportunities. In AIChE Symp. Ser, 87, 1-12. Houston. AIChE Symp
  29. . Magistro, A. J, Cowfer, J. A. (1986). Real world of industrial chemistry: Oxychlorination of ethylene. J. Chem. Educ, 63, 1056-1058. DOI: 10.1021/ED063P1056
  30. . Toor, F. D., Calderbank, P. H. (1968). Communication, Performance of an 18 in diameter fluidised-bed catalytic reactor with a pseudo first-order reaction and discussion of scale-up problems. In Proceedings of the tripartite chemical engineering conference,12-20. Montreal. The tripartite chemical engineering conference
  31. . Maklavany, D.M., Shariati, A., Nikou, M.R.K., Roozbehani, B. (2017). Hydrogen Production via Low Temperature Water Gas Shift Reaction: Kinetic Study, Mathematical Modeling, Simulation and Optimization of Catalytic Fixed Bed Reactor using gPROMS. Chemical Product and Process Modeling, 12, 20160063. DOI: 10.1515/cppm-2016-0063
  32. . Khraibet, S.A, Mazloom, G., Banisharif, F. (2021). Comparative Study of Different Two-Phase Models for the Propane Oxidative Dehydrogenation in a Bubbling Fluidized Bed Containing the VOx/γ-Al2O3 Catalyst. Ind. Eng. Chem. Res, 60, 9729-9738. DOI: 10.1021/acs.iecr.1c01040
  33. . Shamiri, A., Hussain, M.A., Mjalli, F.S., Shafeeyan, M.S., Mostoufi, N.(2014). Experimental and Modeling Analysis of Propylene Polymerization in a Pilot-Scale Fluidized Bed Reactor. Ind. Eng. Chem. Res, 53, 8694-8705. DOI: 10.1021/ie501155h
  34. . Singh, R.K., Roy, G.K. (2005). Prediction of minimum bubbling velocity, fluidization index and range of particulate fluidization for gas–solid fluidization in cylindrical and non-cylindrical beds. Powder Technology, 159, 168-172. DOI :10.1016/j.powtec.2005.08.008
  35. . Perry, R.H., Green, D.W., Maloney, J.O., Abbott, M.M., Ambler, C.M., Amero, R.C. (1997). Perry’s chemical engineers’ handother. Edition. New York: McGraw-hill
  36. . Villermaux, J. (1993). Génie de la réaction chimique. Edition. Paris: Tec & Doc-Lavoisier
  37. . Levenspiel, O. (1999). Chemical Reaction Engineering. Edition. New York: John Wiley & Sons
  38. . Constantinides, A., Mostoufi, N. (1999). Numerical Methods for Chemical Engineers with MATLAB Applications. Edition. New Jersey: Prentice Hall PTR
  39. . Lu, W.Z., Teng, L.H., Xiao, W.D. (2004). Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chemical Engineering Science, 59, 5455–5464. DOI: 10.1016/j.ces.2004.07.031
  40. . Pan, H.Y., Minet, R.G., Benson, S.W., Tsotsis, T.T. (1994). Process for converting hydrogen chloride to chlorine. Ind. Eng. Chem. Res, 33, 2996-3003. DOI: 10.1021/ie00036a014

Last update:

No citation recorded.

Last update:

No citation recorded.