skip to main content

Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite

1Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang, 30139, Indonesia

2Master Program of Material Science, Graduate School Universitas Sriwijaya, Palembang, 30139, Indonesia

Received: 19 Jan 2024; Revised: 18 Feb 2024; Accepted: 21 Feb 2024; Available online: 5 Mar 2024; Published: 30 Aug 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

To address environmental pollution, we developed Ni/Al layered double hydroxide-graphene oxide (Ni/Al-GO) adsorbent materials for the purpose of eliminating methylene blue (MB) dye pollutants. The adsorption process was explored by examining many experimental factors, including temperature, regeneration/reuse procedure, pH, and time, and their effects on the material. The appropriate model for the isotherm is the Langmuir isotherm. The Ni/Al-GO material achieved a maximum adsorption capacity of 61.35 mg/g for MB dye at a temperature of 60 °C. The thermodynamic characteristics indicate that the adsorption process is both endothermic and spontaneous as the temperature increases. The regeneration method demonstrated that the Ni/Al-GO material has a highly stable structure, enabling it to be utilized for five cycles with a remarkable regeneration rate of 93.49% in the fifth cycle. The pH that yielded the best results for all materials was pH 10, and the kinetic model demonstrated a pseudo second-order behavior. Copyright © 2024 by Authors, Published by MKICS and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Layered double hydroxide; Graphene Oxide; Methylene Blue; Adsorption
Funding: Sriwijaya University

Article Metrics:

  1. Valentini, F., Cerza, E., Campana, F., Marrocchi, A., Vaccaro, L. (2023). Efficient synthesis and investigation of waste-derived adsorbent for water purification. Exploring the impact of surface functionalization on methylene blue dye removal. Bioresource Technology, 390(October), 129847. DOI: 10.1016/j.biortech.2023.129847
  2. Li, S., Li, X., Li, S., Xu, P., Liu, Z., Yu, S. (2023). In-situ preparation of lignin/Fe3O4 magnetic spheres as bifunctional material for the efficient removal of metal ions and methylene blue. International Journal of Biological Macromolecules, 259(P2), 128971. DOI: 10.1016/j.ijbiomac.2023.128971
  3. Oladipo, A.C., Aderibigbe, A.D., Olayemi, V.T., Ajibade, P.A., Clayton, H.S., Zolotarev, P.N., Clarkson, G.J., Walton, R.I., Tella, A.C. (2024). Photocatalytic degradation of methylene blue using sunlight-powered coordination polymers constructed from a tetracarboxylate linker. Journal of Photochemistry and Photobiology A: Chemistry, 448(November 2023), 115331. DOI: 10.1016/j.jphotochem.2023.115331
  4. Sun, S.F., Wan, H.F., Zhao, X., Gao, C., Xiao, L.P., Sun, R.C. (2023). Facile construction of lignin-based network composite hydrogel for efficient adsorption of methylene blue from wastewater. International Journal of Biological Macromolecules, 253(P1), 126688. DOI: 10.1016/j.ijbiomac.2023.126688
  5. Yang, P., Lu, Y., Zhang, H., Li, R., Hu, X., Shahab, A., Elnaggar, A.Y., Alrefaei, A.F., AlmutairiI, M.H., Ali, E. (2024). Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation. Environmental Technology and Innovation, 33(November 2023), 103459. DOI: 10.1016/j.eti.2023.103459
  6. Srinivasan, R. (2023). A sustainable and cyclic metal organic framework-driven Fenton process for efficient removal of methylene blue. Inorganic Chemistry Communications, 156(August), 111209. DOI: 10.1016/j.inoche.2023.111209
  7. Wang, L., Xue, G., Ye, T., Li, J., Liu, C., Liu, J., Ma, P. (2023). Zn-modified biochar preparation from solvent free in-situ pyrolysis and its removal of methylene blue. Diamond and Related Materials, 140(PA), 110438. DOI: 10.1016/j.diamond.2023.110438
  8. Khooni, M.A.K., Ahmadzadeh, H., Davardoostmanesh, M. (2024). Magnetic graphene oxide/Mg-Al layered double hydroxide nanocomposite as an efficient adsorbent for removal of methylene blue: A study of equilibrium isotherms, kinetics, thermodynamic and reusability. Materials Science and Engineering: B, 300(October 2023), 117123. DOI: 10.1016/j.mseb.2023.117123
  9. Handayani, T., Emriadi, Deswati, Ramadhani, P., Zein, R. (2024). Modelling studies of methylene blue dye removal using activated corn husk waste: Isotherm, kinetic and thermodynamic evaluation. South African Journal of Chemical Engineering, 47(January 2023), 15–27. DOI: 10.1016/j.sajce.2023.10.003
  10. Hegazy, S., Abdelwahab, N.A., Ramadan, A.M., Mohamed, S.K. (2024). Magnetic Fe3O4-grafted cellulose/graphene oxide nanocomposite for methylene blue removal from aqueous solutions: Synthesis and characterization. Next Materials, 3(November 2023), 100064. DOI: 10.1016/j.nxmate.2023.100064
  11. Hingrajiya, R.D., Patel, M.P. (2023). Fe3O4 modified chitosan based co-polymeric magnetic composite hydrogel: Synthesis, characterization and evaluation for the removal of methylene blue from aqueous solutions. International Journal of Biological Macromolecules, 244(March), 125251. DOI: 10.1016/j.ijbiomac.2023.125251
  12. Amri, A., Hanifah, Y. (2023). Synthesis of Graphene Oxide using Hummers Method as Adsorbent of Malachite Green Dye. Indonesian Journal of Material Research, 1(1), 29–34
  13. Palapa, N.R., Amri, A., Hanifah, Y. (2023). Potential Indonesian Rice Husk for Wastewater Treatment Agricultural Waste Preparation and Dye Removal Application. Indonesian Journal of Environmental Management and Sustainability, 7(4), 160–165. DOI: 10.26554/ijems.2023.7.4.160-165
  14. Siregar, P., Wijaya, A., Nduru, J.P., Hidayati, N., Lesbani, A. (2022). Layered Double Hydroxide/C ( C = Humic Acid ; Hydrochar ) As Adsorbents of Cr( VI ). Science and Technology Indonesia, 7(1), 41–48
  15. Ahmad, N., Rohmatullaili, Wijaya, A., Lesbani, A. (2023). Magnetite Humic Acid-decorated MgAl Layered Double Hydroxide and Its Application in Procion Red Adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684(February 2023), 133042. DOI: 10.1016/j.colsurfa.2023.133042
  16. Wang, Q., Peng, Y., Chen, M., Xu, M., Ding, J., Yao, Q., Lu, S. (2024). Synthesis of layered double hydroxides from municipal solid waste incineration fly ash for heavy metal adsorption. Science of The Total Environment, 912(October 2023), 169482. DOI: 10.1016/j.scitotenv.2023.169482
  17. Amri, A., Rezonsi, R., Ahmad, N., Taher, T., Palapa, N.R., Mohadi, R., Lesbani, A. (2023). Biochar-Modified Layered Double Hydroxide for Highly Efficient on Phenol Adsorption. Bulletin of Chemical Reaction Engineering and Catalysis, 18(3), 460–472. DOI: 10.9767/bcrec.19898
  18. Ahmad, N., Suryani Arsyad, F., Royani, I., Mega Syah Bahar Nur Siregar, P., Taher, T., Lesbani, A. (2023). High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution. Inorganic Chemistry Communications, 150(January), 110517. DOI: 10.1016/j.inoche.2023.110517
  19. Heshami, M., Taheri, B. (2024). An experimental study on the adsorption behavior of gold glycinate complex on graphene oxide. Hydrometallurgy, 224, 106229. DOI: 10.1016/j.hydromet.2023.106229
  20. Yang, W., Cao, M. (2022). Study on the Difference in Adsorption Performance of Graphene Oxide and Carboxylated Graphene Oxide for Cu(II), Pb(II) Respectively and Mechanism Analysis. Diamond and Related Materials, 129(September), 109332. DOI: 10.1016/j.diamond.2022.109332
  21. Sun, Y., Yuan, Q., Dong, Y., Wang, Y., He, N., Wen, D. (2023). Resistive switching of two-dimensional NiAl-layered double hydroxides and memory logical functions. Journal of Alloys and Compounds, 933, 167745. DOI: 10.1016/j.jallcom.2022.167745
  22. Wu, M., Li, W., Yang, W., Han, Q., Yao, J., Zhao, M., Lu, X. (2023). Reduced self-discharge of supercapacitors based on surfactant-functionalized NiAl layered double hydroxide. Journal of Energy Storage, 73(PB), 108965. DOI: 10.1016/j.est.2023.108965
  23. Giri, B.S., Sonwani, R.K., Varjani, S., Chaurasia, D., Varadavenkatesan, T., Chaturvedi, P., Yadav, S., Katiyar, V., Singh, R.S., Pandey, A. (2022). Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere, 287(August 2021) DOI: 10.1016/j.chemosphere.2021.132282
  24. Zhang, S., Fan, S., Liang, T., Wei, J., Zhu, T., Shen, Y., Yu, Z., Zhu, H., Wang, S., Hou, Y. (2023). Sn and dual-oxygen-vacancy in the Z-scheme Bi2Sn2O7/Sn/NiAl-layered double hydroxide heterojunction synergistically enhanced photocatalytic activity toward carbon dioxide reduction. Journal of Colloid and Interface Science, 652(PB), 1126–1137. DOI: 10.1016/j.jcis.2023.08.145
  25. Rashed, S.H., Abd-Elhamid, A.I., Abdalkarim, S.Y.H., El-Sayed, R.H., El-Bardan, A.A., Soliman, H.M.A., Nayl, A.A. (2022). Preparation and Characterization of Layered-Double Hydroxides Decorated on Graphene Oxide for Dye Removal from Aqueous Solution. Journal of Materials Research and Technology, 17, 2782–2795. DOI: 10.1016/j.jmrt.2022.02.040
  26. Zhang, Y., Li, L., Du, C., Wan, G., Wei, Q., Zhou, X., Su, Y., Xu, Y., Wang, G. (2023). Controllable coating NiAl-layered double hydroxides on carbon nanofibers as anticorrosive microwave absorbers. Journal of Materials Science and Technology, 151, 109–118. DOI: 10.1016/j.jmst.2022.12.022
  27. Xu, Y., Zhang, X., Liu, Y., Wei, Y., Lan, F., Wang, R., Yang, Y., Chen, J. (2023). Trace N-doped manganese dioxide cooperated with Ping-pong chrysanthemum-like NiAl-layered double hydroxide on cathode for improving bioelectrochemical performance of microbial fuel cell. Bioresource Technology, 381(March), 129139. DOI: 10.1016/j.biortech.2023.129139
  28. Monjezi, R., Azadi, R., Hamoule, T. (2024). Design, synthesis, and characterization of thiol-decorated cross-linked graphene oxide framework for high-capacity Hg2+ ion adsorption. Journal of Saudi Chemical Society, 28(1), 101786. DOI: 10.1016/j.jscs.2023.101786
  29. Guo, X., Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. DOI: 10.1016/j.molliq.2019.111850
  30. Meskel, A.G., Mussa, M., Meshesha, B.T., Habtu, N.G., Naik, S.V.C.S., V, B.P. (2023). Malachite Green and Methylene Blue Dye Removal Using Modified Bagasse Fly Ash: Adsorption Optimization Studies. Environmental Challenges, 14(October 2023), 100829. DOI: 10.1016/j.envc.2023.100829
  31. Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M.L., Mbaya, R. (2022). Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, 8(8), e09930. DOI: 10.1016/j.heliyon.2022.e09930
  32. Pan, X., Zhang, M., Liu, H., Ouyang, S., Ding, N., Zhang, P. (2020). Adsorption behavior and mechanism of acid orange 7 and methylene blue on self-assembled three-dimensional MgAl layered double hydroxide: Experimental and DFT investigation. Applied Surface Science, 522(March), 146370. DOI: 10.1016/j.apsusc.2020.146370
  33. Aaddouz, M., Azzaoui, K., Akartasse, N., Mejdoubi, E., Hammouti, B., Taleb, M., Sabbahi, R., Alshahateet, S.F. (2023). Removal of methylene blue from aqueous solution by adsorption onto hydroxyapatite nanoparticles. Journal of Molecular Structure, 1288(February), 135807. DOI: 10.1016/j.molstruc.2023.135807
  34. Khan, M.I. (2020). Adsorption of methylene blue onto natural Saudi Red Clay: Isotherms, kinetics and thermodynamic studies. Materials Research Express, 7(5) DOI: 10.1088/2053-1591/ab903c
  35. Mohammadzadeh, F., Golshan, M., Haddadi-Asl, V., Salami-Kalajahi, M. (2023). Adsorption kinetics of methylene blue from wastewater using pH-sensitive starch-based hydrogels. Scientific Reports, 13(1), 1–14. DOI: 10.1038/s41598-023-39241-z
  36. Sen, T.K. (2023). Adsorptive Removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes, 11(7) DOI: 10.3390/pr11071877
  37. Kaur, H., Singh, S., Pal, B. (2021). Impact of g-C3N4 loading on NiCo LDH for adsorptive removal of anionic and cationic organic pollutants from aqueous solution. Korean Journal of Chemical Engineering, 38(6), 1248–1259. DOI: 10.1007/s11814-021-0784-6
  38. Kheradmand, A., Negarestani, M., Kazemi, S., Shayesteh, H., Javanshir, S., Ghiasinejad, H. (2022). Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Scientific Reports, 12(1), 1–17. DOI: 10.1038/s41598-022-19056-0
  39. Abdel-Hady, E.E., Mahmoud, R., Hafez, S.H.M., Mohamed, H.F.M. (2022). Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. Journal of Materials Research and Technology, 17, 1922–1941. DOI: 10.1016/j.jmrt.2022.01.042
  40. Wang, J., Sun, Y., Zhu, B., Wang, T., Wang, Q., Pan, W.P. (2024). Effects of surface functionalizing and pore structure on dissolved mercury adsorption in gasoline by covalent sulphur-doped templated carbons: Experimental and theoretical insights. Geoenergy Science and Engineering, 234(October 2023), 212629. DOI: 10.1016/j.geoen.2023.212629

Last update:

No citation recorded.

Last update:

No citation recorded.