skip to main content

Designing A Visible Light Driven TiO2-Based Photocatalyst by Doping and Co-Doping with Niobium (Nb) and Boron (B)

1School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia

2Faculty of Science and Natural Resources / Industrial Chemistry Programme, University Malaysia Sabah, Sabah, Malaysia

3Department of Materials Science and Engineering, National Cheng Kung University, Tainan City, Taiwan

Received: 5 Mar 2024; Revised: 13 Jun 2024; Accepted: 14 Jun 2024; Available online: 16 Jun 2024; Published: 30 Aug 2024.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Water pollution has emerged as a significant worldwide issue, with organic pollutants being a key contributor. Titanium dioxide (TiO2) has demonstrated promising photocatalytic performance in removing organic pollutants under ultraviolet (UV) irradiation. However, the wide band gap (3.2 eV) of TiO2 results in low absorption capacity of visible light, hindering its overall efficiency in degrading organic pollutants. To address the limitation, this research aimed to synthesize visible light-driven TiO2 photocatalyst with different polymorphs (anatase and rutile) and investigate the effect of various doping combination (Nb, B and Nb,B) and concentrations (0.25, 0.50, 0.75 and 1.00 mol%) on the photodegradation efficiency towards methylene blue (MB) dye solution. Anatase phase was obtained when TiO2-based nanopowders were calcined at 400 °C, while the rutile phase was formed at 900 °C based on XRD analyses. Additionally, the morphology analyses revealed that the particle size of anatase is much smaller than that of rutile. The presence of dopants further reduced the particle size of both anatase and rutile phases. Based on UV-Vis absorbance spectra analyses, the anatase Nb,B-TiO2 with 0.50 mol% of dopant concentration exhibited the best photocatalytic performance towards MB. Moreover, the anatse phase of 0.50 mol% Nb,B-TiO2 showed the narrowest band gap of 2.74 eV compared to the TiO2 (3.4 eV), representing a reduction of 19.41 %, according to UV-Vis analyses. These outcomes suggest the potential application of anatase phase of 0.50 mol% Nb,B-TiO2 in treating organic pollutants in wastewater under visible light conditions in future. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: TiO2; anatase; doping; visible light-driven; band gap energy reduction
Funding: Universiti Sains Malaysia, Special (Matching) Short-Term Grant under contract 304.PBAHAN.6315709

Article Metrics:

  1. Pant, B., Park, M., Park, S. J. (2019). Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings (Vol. 9, Issue 10). MDPI AG. DOI: 10.3390/coatings9100613
  2. Paul, R., K., K, P., S. (2023). Tantalum doped titanium dioxide nanoparticles for efficient photocatalytic degradation of dyes. Journal of Molecular Structure, 1277. DOI: 10.1016/j.molstruc.2022.134869
  3. Desch, N., Rheindorf, A., Fassbender, C., Sloot, M., Lake, M. (2023). Photocatalytic degradation of methylene blue by anatase TiO2 coating. Applied Research. DOI: 10.22541/au.169382729.90341592/v2
  4. Siregar, S. H., Prasetya, P., Norramizawati, N., Marlian, M., Ramadhanti, A. R. (2023). Titanium Dioxide (TiO2) Modified Bentonite for Photodegradation in Methylene Blue Dye. Jurnal Kimia Sains dan Aplikasi, 26(4), 143–150. DOI: 10.14710/jksa.26.4.143-150
  5. Kerli, S., Kavgacı, M., Soğuksu, A. K., Avar, B. (2022). Photocatalytic Degradation of Methylene Blue, Rhodamine-B, and Malachite Green by Ag@ZnO/TiO2. Brazilian Journal of Physics, 52(1). DOI: 10.1007/s13538-021-01007-1
  6. Gatou, M. A., Fiorentis, E., Lagopati, N., Pavlatou, E. A. (2023). Photodegradation of Rhodamine B and Phenol Using TiO2/SiO2 Composite Nanoparticles: A Comparative Study. Water (Switzerland), 15(15). DOI: 10.3390/w15152773
  7. Lim, C., An, H. R., Ha, S., Myeong, S., Min, C. G., Chung, H. J., Son, B., Kim, C. Y., Park, J. I., Kim, H., Lee, H. U., Lee, Y. S. (2023). Highly visible-light-responsive nano-porous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications. Applied Surface Science, 638. DOI: 10.1016/j.apsusc.2023.158123
  8. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., Khan, I. (2022). Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland) (Vol. 14, Issue 2). MDPI. DOI: 10.3390/w14020242
  9. Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety (Vol. 231). Academic Press. DOI: 10.1016/j.ecoenv.2021.113160
  10. Manzoor, J., Sharma, M. (2019). Impact of textile dyes on human health and environment. In Impact of Textile Dyes on Public Health and the Environment (pp. 162–169). IGI Global. DOI: 10.4018/978-1-7998-0311-9.ch008
  11. Yardımcı, B., Kanmaz, N. (2023). An effective-green strategy of methylene blue adsorption: Sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2. Journal of Environmental Chemical Engineering, 11(3). DOI: 10.1016/j.jece.2023.110254
  12. Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering (Vol. 16). Elsevier B.V. DOI: 10.1016/j.rineng.2022.100678
  13. Faryad, S., Azhar, U., Tahir, M. B., Ali, W., Arif, M., Sagir, M. (2023). Spinach-derived boron-doped g-C3N4/TiO2 composites for efficient photo-degradation of methylene blue dye. Chemosphere, 320. DOI: 10.1016/j.chemosphere.2023.138002
  14. Zhong, J., Wen, S., Zhang, L., Wang, J., Liu, C., Yu, J., Zhang, L., Fan, C. (2021). Nitrogen budget at sediment–water interface altered by sediment dredging and settling particles: Benefits and drawbacks in managing eutrophication. Journal of Hazard Mater, 406. DOI: 10.1016/j.jhazmat.2020.124691
  15. Qian, Y., Chen, Y., Hu, Y., Hanigan, D., Westerhoff, P., An, D. (2021). Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment. Water Research, 194. DOI: 10.1016/j.watres.2021.116964
  16. Tang, J., Pu, Y., Zeng, T., Hu, Y., Huang, J., Pan, S., Wang, X. C., Li, Y., Abomohra, A. E. F. (2022). Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. Bioresour Technol, 345. DOI: 10.1016/j.biortech.2021.126470
  17. Cevallos-Mendoza, J., Amorim, C. G., Rodríguez-Díaz, J. M., Montenegro, M. da C. B. S. M. (2022). Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes (Vol. 12, Issue 6). MDPI. DOI: 10.3390/membranes12060570
  18. Mahto, K. U., Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresource Technology (Vol. 345). Elsevier Ltd. DOI: 10.1016/j.biortech.2021.126476
  19. Li, L., He, Z., Liang, T., Sheng, T., Zhang, F., Wu, D., Ma, F. (2022). Colonization of biofilm in wastewater treatment: A review. Environmental Pollution (Vol. 293). Elsevier Ltd. DOI: 10.1016/j.envpol.2021.118514
  20. Waqas, S., Harun, N. Y., Sambudi, N. S., Abioye, K. J., Zeeshan, M. H., Ali, A., Abdulrahman, A., Alkhattabi, L., Alsaadi, A. S. (2023). Effect of Operating Parameters on the Performance of Integrated Fixed-Film Activated Sludge for Wastewater Treatment. Membranes (Vol. 13, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). DOI: 10.3390/membranes13080704
  21. Begmatov, S., Dorofeev, A. G., Kadnikov, V. V., Beletsky, A. V., Pimenov, N. V., Ravin, N. V., Mardanov, A. V. (2022). The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Scientific Reports, 12(1). DOI: 10.1038/s41598-022-07132-4
  22. Ghazal, H., Koumaki, E., Hoslett, J., Malamis, S., Katsou, E., Barcelo, D., Jouhara, H. (2022). Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals. Journal of Cleaner Production, 361. DOI: 10.1016/j.jclepro.2022.132079
  23. Saidulu, D., Gupta, B., Gupta, A. K., Ghosal, P. S. (2021). A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment-based hybrid systems. Journal of Environmental Chemical Engineering, 9(4). DOI: 10.1016/j.jece.2021.105282
  24. Nirmala, N., Shriniti, V., Aasresha, K., Arun, J., Gopinath, K. P., Dawn, S. S., Sheeladevi, A., Priyadharsini, P., Birindhadevi, K., Chi, N. T. L., Pugazhendhi, A. (2022). Removal of toxic metals from wastewater environment by graphene-based composites: A review on isotherm and kinetic models, recent trends, challenges and future directions. Science of the Total Environment, (Vol. 840). Elsevier B.V. DOI: 10.1016/j.scitotenv.2022.156564
  25. M Suhan, M. B. K., Al-Mamun, M. R., Farzana, N., Aishee, S. M., Islam, M. S., Marwani, H. M., Hasan, M. M., Asiri, A. M., Rahman, M. M., Islam, A., Awual, M. R. (2023). Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review. Nano-Structures and Nano-Objects (Vol. 36). Elsevier B.V. DOI: 10.1016/j.nanoso.2023.101050
  26. Thakur, N., Thakur, N., Kumar, A., Thakur, V. K., Kalia, S., Arya, V., Kumar, A., Kumar, S., Kyzas, G. Z. (2024). A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Science of The Total Environment, 169815. DOI: 10.1016/j.scitotenv.2023.169815
  27. Navidpour, A. H., Abbasi, S., Li, D., Mojiri, A., Zhou, J. L. (2023). Investigation of Advanced Oxidation Process in the Presence of TiO2 Semiconductor as Photocatalyst: Property, Principle, Kinetic Analysis, and Photocatalytic Activity. Catalysts (Vol. 13, Issue 2). MDPI. DOI: 10.3390/catal13020232
  28. Oruç, P., Turan, N., Cavdar, S., Tuğluoğlu, N., Koralay, H. (2023). Investigation of dielectric properties of amorphous, anatase, and rutile TiO2 structures. Journal of Materials Science: Materials in Electronics, 34(6). DOI: 10.1007/s10854-023-09924-4
  29. Allen, N. S., Mahdjoub, N., Vishnyakov, V., Kelly, P. J., Kriek, R. J. (2018). The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2),” Polymer Degradation and Stability, 150, 31–36. DOI: 10.1016/j.polymdegradstab.2018.02.008
  30. Ghose, K. K., Liu, Y., Frankcombe, T. J. (2023). Comparative first-principles structural and vibrational properties of rutile and anatase TiO2. Journal of Physics Condensed Matter, 35(50). DOI: 10.1088/1361-648X/acf639
  31. Kim, M. G., Kang, J. M., Lee, J. E., Kim, K. S., Kim, K. H., Cho, M., Lee, S. G. (2021). Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles. ACS Omega, 6(16), 10668–10678. DOI: 10.1021/acsomega.1c00043
  32. Fu, N., Chen, H., Chen, R., Ding, S., Ren, X. (2023). Effect of Calcination Temperature on the Structure, Crystallinity, and Photocatalytic Activity of Core-Shell SiO2@TiO2 and Mesoporous Hollow TiO2 Composites. Coatings, 13(5). DOI: 10.3390/coatings13050852
  33. Eddy, D. R., Permana, M. D., Sakti, L. K., Sheha, G. A. N., Solihudin, G. A. N., Hidayat, S., Takei, T., Kumada, N., Rahayu, I. (2023). Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials, (Vol. 13, Issue 4). MDPI. DOI: 10.3390/nano13040704
  34. Holm, A., Hamandi, M., Simonet, F., Jouguet, B., Dappozze, F., Guillard, C. (2019). Impact of rutile and anatase phase on the photocatalytic decomposition of lactic acid. Applied Catalysis B: Environmental, 253, 96–104. DOI: 10.1016/j.apcatb.2019.04.042
  35. Mohamad Idris, N. H., Cheong, K. Y., Smith, S. M., Lee, H. L. (2023). C,N-Co-doped TiO2 Nanoparticles Immobilized on Floating Alginate Beads for Diazinon Removal under Solar Light Irradiation. ACS Applied Nano Materials. American Chemical Society. DOI: 10.1021/acsanm.3c03622
  36. Al-Mamun, M. R., Kader, S., Islam, M. S. (2021). Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environmental Nanotechnology, Monitoring and Management, 16. DOI: 10.1016/j.enmm.2021.100514
  37. Kader, S., Al-Mamun, M. R., Suhan, M. B. K., Shuchi, S. B., Islam, M. S. (2022). Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and Ag doped TiO2 photocatalysts. Environmental Technology and Innovation, 27. DOI: 10.1016/j.eti.2022.102476
  38. Wu, M. C., Lin, T. H., Chih, J. S., Hsiao, K. C., Wu, P. Y. (2017). Niobium doping induced morphological changes and enhanced photocatalytic performance of anatase TiO2. Japanese Journal of Applied Physics, 56(4). DOI: 10.7567/JJAP.56.04CP07
  39. Kou, Y., Yang, J., Li, B., Fu, S. (2015). Solar photocatalytic activities of porous Nb-doped TiO2 microspheres by coupling with tungsten oxide. Materials Research Bulletin, 63, 105–111. DOI: 10.1016/j.materresbull.2014.11.050
  40. Gomes, G. H. M., de Jesus, M. A. M. L., Ferlauto, A. S., Viana, M. M., Mohallem, N. D. S. (2021). Characterization and application of niobium-doped titanium dioxide thin films prepared by sol–gel process. Applied Physics A: Materials Science and Processing, 127(8). DOI: 10.1007/s00339-021-04781-6
  41. Mulpuri, R. K., Tirukkovalluri, S. R., Imandi, M. R., Alim, S. A., Lakshmi Kapuganti, V. D. (2019). Zinc and boron co-doped nano titania with enhanced photocatalytic degradation of acid red 6A under visible light irradiation. Sustainable Environment Research, 1(1). DOI: 10.1186/s42834-019-0031-6
  42. Cano-Casanova, L., Ansón-Casaos, A., Hernández-Ferrer, J., Benito, A. M., Maser, W. K., Garro, N., Lillo-Ródenas, M. A., Román-Martínez, M. C. (2022). Surface-Enriched Boron-Doped TiO2 Nanoparticles as Photocatalysts for Propene Oxidation. ACS Applied Nano Materials, 5(9), 12527–12539. DOI: 10.1021/acsanm.2c02217
  43. Moreira, A. J., Dos Santos, B. R. M., Dias, J. A., Rabello, P. T., Coelho, D., Mascaro, L. H., Freschi, G. P. G., Gobato, Y. G., Galeti, H. V. A., Mastelaro, V. R., Pereira, E. C. (2023). Photoactivity of boron-or nitrogen-modified TiO2 for organic pollutants degradation: Unveiling the photocatalytic mechanisms and by-products. Journal of Environmental Chemical Engineering, 11(1). DOI: 10.1016/j.jece.2022.109207
  44. Muneeb, A., Rafique, M. S., Murtaza, M. G., Arshad, T., Shahadat, I., Rafique, M., Nazir, A. (2023). Fabrication of Ag–TiO2 nanocomposite employing dielectric barrier discharge plasma for photodegradation of methylene blue,” Physica B: Condensed Matter, 665. DOI: 10.1016/j.physb.2023.414995
  45. Wu, Y., Gong, Y., Liu, J., Zhang, Z., Xu, Y., Ren, H., Li, C., & Niu, L. (2017). B and Y co-doped TiO2 photocatalyst with enhanced photodegradation efficiency. Journal of Alloys and Compounds, 695, 1462–1469. DOI: 10.1016/j.jallcom.2016.10.284
  46. Ren, Y., Zhao, L., Zou, Y., Song, L., Dong, N., & Wang, J. (2019). Effects of different TiO2 particle sizes on the microstructure and optical limiting properties of TiO2/reduced graphene oxide nanocomposites. Nanomaterials, 9(5). DOI: 10.3390/nano9050730
  47. Mogal, S. I., Gandhi, V. G., Mishra, M., Tripathi, S., Shripathi, T., Joshi, P. A., Shah, D. O. (2014). Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties. Industrial and Engineering Chemistry Research, 53(14), 5749–5758. DOI: 10.1021/ie404230q
  48. Syazana Mohtar, S., Aziz, F., Fauzi Ismail, A., Sambudi, N. S., Abdullah, H., Rosli, A. N., & Ohtani, B. (2021). Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts, 11, 1160. DOI: 10.3390/catal

Last update:

No citation recorded.

Last update:

No citation recorded.