skip to main content

A Study of ZSM-5 Molecular Sieve Shaping for an Innovative Cyclohexene Hydration Process

1Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China

2Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China

Received: 23 Dec 2023; Revised: 17 Jan 2024; Accepted: 17 Jan 2024; Available online: 22 Jan 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image

The development of the zeolite molecular sieves (ZSM-5) molding technique is essential for the cyclohexene hydration reaction distillation process in both industrial and research settings. The reactive distillation process can solve many of the drawbacks associated with the existing technique of manufacturing cyclohexanol via cyclohexene hydration, such as high catalyst digestibility, low conversion rate, and operational challenges. This study developed a series of molded ZSM-5 catalysts with various binder types and contents were constructed. The suggested pseudo-boehmite and hydroxypropyl methylcellulose were chosen as binders for extrusion molding of ZSM-5. The effects of binders on the strength reliability were investigated by strength tests and statistical analysis of the Weibull function. The effects of binders on the physical structure, acidity, and catalytic performance of ZSM-5 were investigated by X-ray diffraction, scanning electron microscopy, physical adsorption of N2, and desorption of NH3. The findings demonstrate that the addition of binder has no effect on ZSM-5's crystal structure. The experiment's results showed that the molded catalyst could be used for the hydration process with over 95% selectivity and a yield of 10.45% cyclohexanol. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (

Keywords: Cyclohexene hydration; Reactive distillation; ZSM-5; Catalyst molding
Funding: Tianjin University, R&D Center for Petrochemical Technology in China.

Article Metrics:

  1. Sommer, T., Zapletal, M., Trejbal, J. (2018). Production of cyclic alcohols. Chemical Papers, 72 (10), 2397-2412. DOI: 10.1007/s11696-018-0508-5
  2. Bart, J.C.J., Cavallaro, S. (2015). Transiting from Adipic Acid to Bioadipic Acid. Part II. Biosynthetic Pathways. Industrial & Engineering Chemistry Research, 54(2), 567-576. DOI: 10.1021/ie502074d
  3. Wang, H., Qin, M., Wu, Q., Cheng, D.-G., Meng, X., Wang, L., Xiao, F.-S. (2022). Zeolite Catalysts for Green Production of Caprolactam. Industrial & Engineering Chemistry Research, 62(5), 2217–2224. DOI: 10.1021/acs.iecr.2c01693
  4. Kumar, R., Shah, S., Das, P.P., Bhabavanbhai, G.G., Al Fatesh, A., Chowdhury, B. (2019). An overview of caprolactam synthesis. Catalysis Reviews-Science and Engineering, 61(4), 516-594. DOI: 10.1080/01614940.2019.1650876
  5. Zong, B., Sun, B., Cheng, S., Mu, X., Yang, K., Zhao, J., Zhang, X., Wu, W. (2017). Green Production Technology of the Monomer of Nylon-6: Caprolactam. Engineering, 3(3), 379-384. DOI: 10.1016/j.Eng.2017.03.003
  6. Gong, J., Hou, S., Wang, Y., Ma, X. (2023). Progress in Processes and Catalysts for Dehydrogenation of Cyclohexanol to Cyclohexanone. Transactions of Tianjin University, 29(3), 196-208. DOI: 10.1007/s12209-023-00358-x
  7. Ali, M.A., Abutaleb, A. (2022). An Updated Comprehensive Literature Review of Phenol Hydrogenation Studies. Catalysis Letters, 152 (5), 1555-1581. DOI: 10.1007/s10562-021-03714-5
  8. Xue, G., Yin, L., Shao, S., Li, G. (2022). Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology, 33 (7), 072003. DOI: 10.1088/1361-6528/ac385f
  9. Chen, H., Sun, J. (2021). Selective hydrogenation of phenol for cyclohexanone: A review. Journal of Industrial and Engineering Chemistry, 94, 78-91. DOI: 10.1016/j.jiec.2020.11.022
  10. Dhakshinamoorthy, A., Lopez-Frances, A., Navalon, S., Garcia, H. (2022). Porous Metal Organic Frameworks as Multifunctional Catalysts for Cyclohexane Oxidation. ChemCatChem, 14 (22), e202201036. DOI: 10.1002/cctc.202201036
  11. Perkel, A.L., Voronina, S.G. (2019). Liquid-phase oxidation of cyclohexane. Cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone, mechanisms of formation and transformation. Russian Chemical Bulletin, 68(3), 480-492. DOI: 10.1007/s11172-019-2443-1
  12. Zheng, H., Lin, M., Qiu, T., Shen, Y., Tian, H., Zhao, S. (2017). Simulation study of direct hydration of cyclohexene to cyclohexanol using isophorone as cosolvent. Chemical Engineering Research & Design, 117, 346-354. DOI: 10.1016/j.cherd.2016.10.031
  13. Liu, X., Luo, H., Lei, Y., Wu, X., Gani, R. (2022). Heat-pump-assisted reactive distillation for direct hydration of cyclohexene to cyclohexanol: a sustainable alternative. Separation and Purification Technology, 280, 119808. DOI: 10.1016/j.seppur.2021.119808
  14. Taipabu, M.I., Novita, F.J., Lee, H.-Y., Handogo, R. (2021). Improvement of Cyclohexene/ Cyclohexane separation process design via chemical looping technology using reactive distillation and thermally coupled configurations. Chemical Engineering and Processing-Process Intensification, 168, 108587, Article. DOI: 10.1016/j.cep.2021.108587
  15. Hu, M., Tian, H. (2021). Design of process and control scheme for cyclohexanol production from cyclohexene using reactive distillation. Chinese Journal of Chemical Engineering, 40, 96-105. DOI: 10.1016/j.cjche.2020.11.029
  16. Tian, H., Liu, S., Liu, Q. (2022). HZSM-5 zeolite modification and catalytic reaction mechanism in the reaction of cyclohexene hydration. RSC Advances, 12 (38), 24654-24669. DOI: 10.1039/d2ra04285a
  17. Spod, H., Lucas, M., Claus, P. (2017). Hydration of Cyclohexene into Cyclohexanol using H-ZSM5 as Catalyst. Chemie Ingenieur Technik, 89(6), 750-756. DOI: 10.1002/cite.201600160
  18. Wang, S., Li, C., Wen, Y., Wei, H., Li, B., Wang, X. (2016). Microparticle HZSM-5 zeolite as highly active catalyst for the hydration of cyclohexene to cyclohexanol. Research on Chemical Intermediates, 42 (12), 8131-8142. DOI: 10.1007/s11164-016-2584-x
  19. Gao, J., Li, X., Shi, D., Qu, L., Zhang, J. (2020). Honeycomb molding process of ZSM-5 molecular sieves and adsorption to toluene. Modern Chemical Industry, 40 (6), 123-127
  20. Wang, J., Gao, X., Chen, G., Din, C. (2019). Forming pure shaped ZSM-5 zeolite bodies by a steam-assisted method and their application in methanol to aromatic reactions. RSC Advances, 9(49), 28451-28459. DOI: 10.1039/c9ra05513d
  21. Xu, Y., Song, Y., Zhang, Z.-G. (2017). A binder-free fluidizable Mo/HZSM-5 catalyst for non-oxidative methane dehydroaromatization in a dual circulating fluidized bed reactor system. Catalysis Today, 279, 115-123. DOI: 10.1016/j.cattod.2016.03.037
  22. Moon, S., Chae, H.-J., Park, M.B. (2019). Dehydration of Bioethanol to Ethylene over H-ZSM-5 Catalysts: A Scale-Up Study. Catalysts, 9(2), 186. DOI: 10.3390/catal9020186
  23. Li, S., Xia, L., Li, J., Liu, X., Sun, J., Chi, Y., Wang, H., Li, C., Song, Y. (2019). Effect of forming conditions on the performance of catalytic decomposition of N2O over Co/ZSM-5 catalyst. Chemical Industry and Engineering Progress, 38(4), 1746-1752
  24. Jia, C., Zong, L., Wen, Y., Xu, H., Wei, H., Wang, X. (2019). Synthesis and scale-up of ZSM-5 aggregates with hierarchical structure. Research on Chemical Intermediates, 45 (7), 3913-3927. DOI: 10.1007/s11164-019-03828-x
  25. Gao, J., Zhou, H., Zhang, F., Ji, K., Liu, P., Liu, Z., Zhang, K. (2022). Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. Materials, 15 (6), 2206. DOI: 10.3390/ma15062206
  26. Guan, C., Wang, L., Qi, J., Song, C., Zhang, W., Yong, X., Zhang, A., Jin, Z. (2019). Influence of shaping condition on properties of ZSM-5 catalyst. Applied Chemical Industry, 48(8), 1850-1854
  27. Ren, D., Sai, F., Zhao, Y., Xia, Y., Bao, D., Wang, X. (2017). Methane dehydroaromatization in the absence of oxygen over extruded Mo/ZSM-5 with Al2O3-ZnO. Chemical Research and Application, 29 (10), 1492-1497. DOI: 10.3724/SP.J.1088.2010.90939
  28. Xu, Y., Wang, D., Li, Q., Zhang, D., Li, M., Hou, K. (2016). Influences of adhesives on structure and hydrothermal/mechanical stability of unsupported composite Mo-Ni oxide catalysts. Petrochemical Technology, 45 (2), 174-180
  29. Li, N., Wang, Z., Zhang, B., Sun, H., Yang, W. (2016). Preparation and Catalytic Performance of Binder-Free MCM-22 Catalyst. Chemical Reaction Engineering and Technology, 32(3), 198-202
  30. Zhang, L., Xu, A., An, L., Li, M. (2022). Bayesian Inference of System Reliability for Multicomponent Stress-Strength Model under Marshall-Olkin Weibull Distribution. Systems, 10(6), 196. DOI: 10.3390/systems10060196
  31. Liao, D., Zhu, S.-P., Keshtegar, B., Qian, G., Wang, Q. (2020). Probabilistic framework for fatigue life assessment of notched components under size effects. International Journal of Mechanical Sciences, 181, 105685. DOI: 10.1016/j.ijmecsci.2020.105685
  32. Zhang, H., Jiang, T., Yaseen, H.A.S.M., Zhao, Y., Wang, S., Ma, X. (2021). Pelletization and attrition of CaO-based adsorbent for CO2 capture. Asia-Pacific Journal of Chemical Engineering, 16(4), e2656. DOI: 10.1002/apj.2656
  33. Xu, D., Ding, C., Li, F., Liu, Y., He, M. (2023). P-Modified Deactivated TS-1 as an Efficient Catalyst for Catalytic Cracking of Pentene to Ethene and Propene. Chemical Journal of Chinese Universities, 44(8), 20230094. DOI: 10.7503/cjcu20230094
  34. Wang, Z., Ma, A., Yu, Z., Liu, H., Wang, J., Liu, J., Zhang, X., Zhang, R. (2022). Development And Application of Rf-4catalyst for Moving-Bed Light Hydrocarbon Aromatization. Petroleum Processing and Petrochemicals, 53(2), 46-52
  35. Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., Wang, G., Dong, M., Fan, W., Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6 (11), 7311-7325. DOI: 10.1021/acscatal.6b01771
  36. Xiong, H., Liu, Z., Chen, X., Wang, H., Qian, W., Zhang, C., Zheng, A., Wei, F. (2022). In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science, 376 (6592), 491-496. DOI: 10.1126/science.abn7667
  37. Nishu; N., Liu, R., Rahman, M.M., Sarker, M., Chai, M., Li, C., Cai, J. (2020). A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Processing Technology, 199, 106301. DOI: 10.1016/j.fuproc.2019.106301
  38. Mueller, S., Liu, Y., Vishnuvarthan, M., Sun, X., van Veen, A.C., Haller, G.L., Sanchez-Sanchez, M., Lercher, J.A. (2015). Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. Journal of Catalysis, 325, 48-59. DOI: 10.1016/j.jcat.2015.02.013
  39. Lee, H., Zones, S.I., Davis, M.E. (2003). A combustion-free methodology for synthesizing zeolites and zeolite-like materials. Nature, 425(6956), 385-388. DOI: 10.1038/nature01980
  40. Jin, R., Ma, K., Xu, S., Wei, Y., Song, L., Li, Z., Zhang, P., Wang, Y., Wang, J., Zhang, Z., Ma, X., Hu, H., Dai, C., Guo, X. (2022). Effect of acid distribution and pore structure of ZSM-5 on catalytic performance. Reaction Chemistry & Engineering, 7 (10), 2152-2162. DOI: 10.1039/d2re00065b
  41. Lónyi, F., Valyon, J. (2001). On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous and Mesoporous Materials, 47 (2-3), 293-301. DOI: 10.1016/s1387-1811(01)00389-4
  42. Silva, B.J.B., Sousa, L.V., Sarmento, L.R.A., Carvalho, R.P., Quintel, P.H.L., Pacheco, J.G.A., Frety, R., Silva, A.O.S. (2019). Effect of desilication on the textural properties, acidity and catalytic activity of zeolite ZSM-23 synthesized with different structure-directing agents. Microporous and Mesoporous Materials, 290, 109647. DOI: 10.1016/j.micromeso.2019.109647

Last update:

No citation recorded.

Last update:

No citation recorded.