skip to main content

The Properties and Activity of TiO2-based Nanorods as an Anti-Fouling Agent and a Photocatalyst

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang 50229, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Received: 14 Nov 2023; Revised: 27 Dec 2023; Accepted: 2 Jan 2024; Available online: 11 Jan 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The properties and activity of TiO2-based nanorods as an antifouling agent and a photocatalyst for the catalytic degradation of methylene blue (MB) have been investigated. A modification of TiO2 with SiO2 was first carried out to enlarge the surface area. In order to enhance the TiO­2 photo response to the visible light region, a further modification of TiO2-SiO2 (TS) composites with polyaniline (PANI) was also conducted. The nanorod TiO2 exhibited an anatase structure based on the diffraction patterns. The TEM images showed that some TiO2 molecules were attached around SiO2 with a random orientation. The TiO2-SiO2-PANI (TS-PANI) exhibited the largest specific surface area (SBET) of about 256.85 m2/g. The profile on the AFM images of the composites showed that the nano-roughness of the coatings was confirmed. The photocatalytic activity was evaluated through the decomposition of MB both on the powder and the coated composites. The photocatalytic activity on the coatings was verified due to further application as anti-fouling coatings involving photocatalytic mechanism. The decomposition of MB using TS-PANI powder and TS-PANI coating composites was 89.5% and 90.2 %, respectively, with the irradiation time on the coatings was 20 min longer. The anti-fouling activity through the photocatalytic mechanism and nano-roughness surface was confirmed by the inhibition of barnacle growth on the teakwood surface immersed for two months in the sea.

Keywords: TiO2; Polyaniline; Coating; Photo-Activity; Anti-Fouling Agent.

Article Metrics:

  1. Mouni, L., Belkhiri, L., Bollinger, J.-C., Bouzaza, A., Assadi, A., Tirri, A., Dahmoune, F., Madani, K., Remini, H. (2018). Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Applied Clay Science, 153, 38-45. DOI: 10.1016/j.clay.2017.11.034
  2. El-Bery, H.M., Saleh, M., El-Gendy, R.A., Saleh, M.R., Thabet, S.M. (2022). High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Scientific Reports, 12, 5499. DOI: 10.1038/s41598-022-09475-4
  3. Anushree, C., Philip, J. (2019). Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 193-204. DOI: 10.1016/j.colsurfa.2019.01.057
  4. Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 102952. DOI: 10.1016/j.jwpe.2022.102952
  5. Oyarce, E., Butter, B., Santander, P., Sánchez, J. (2021). Polyelectrolytes applied to remove methylene blue and methyl orange dyes from water via polymer-enhanced ultrafiltration. Journal of Environmental Chemical Engineering, 9, 106297. DOI: 10.1016/j.jece.2021.106297
  6. Naffeti, M., Zaïbi, M.A., Nefzi, C., García-Arias, A.V., Chtourou, R., Postigo, P.A. (2023). Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowires. Environmental Technology and Innovation, 30, 103133. DOI: 10.1016/j.eti.2023.103133
  7. Fujishima, A., Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5–6), 750–760. DOI: 10.1016/j.crci.2005.02.055
  8. Fujishima, A., Zhang, X., Tryk, D.A. (2007). Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. International Journal of Hydrogen Energy, 32 (14), 2664-2672. DOI: 10.1016/j.ijhydene.2006.09.009
  9. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919-9986. DOI: 10.1021/cr5001892
  10. Nakata, K., Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001
  11. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., Pillai, S.C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29. DOI: 10.1016/j.jphotochemrev.2015.08.003
  12. Chemin, J.B., Bulou, S., Baba, K., Fontaine, C., Sindzingre, T., Boscher, N.D., Choquet, P. (2018). Transparent anti-fogging and self-cleaning TiO2/SiO2 thin films on polymer substrates using atmospheric plasma. Scientific Reports, 8(1), 1-8. DOI: 10.1038/s41598-018-27526-7
  13. Zhang, X., Guo, Y., Zhang, Z., Zhang, P. (2013). Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane. Applications of Surface Science, 284, 319-323. DOI: 10.1016/j.apsusc.2013.07.100
  14. Kallio, T., Alajoki, S., Pore, V., Ritala, M., Laine, J., Leskela, M., Stenius, P. (2006). Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 291 (1-3), 162-176. DOI: 10.1016/j.colsurfa.2006.06.044
  15. Ruffolo, S.A., Macchia, A., La Russa, M.F., Mazza, L., Urzi, C., De Leo, F., Barberio, M., Crisci, G.M. (2013). Marine antifouling for underwater archaeological sites: TiO2 and Ag-doped TiO2. International Journal of Photoenergy, 2013, 251647. DOI: 10.1155/2013/251647
  16. Cao, S., Wang, J.D., Chen, H.S., Chen, D.R. (2011). Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 56(7), 598-612. DOI: 10.1007/s11434-010-4158-4
  17. Mirabedini, A., Mirabedini, S.M., Babalou, A.A., Pazokifard, S. (2011). Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Progress in Organic Coatings, 72(3), 453-460. DOI: 10.1016/j.porgcoat.2011.06.002
  18. Pazokifard, S., Esfandeh, M., Mirabedini, S.M. Pazokifard, S., Esfandeh, M., Mirabedini, S.M. (2014). (2014). Photocatalytic activity of water-based acrylic coatings containing fluorosilane treated TiO2 nanoparticles. Progress in Organic Coatings, 77(8), 1325-1335. DOI: 10.1016/j.porgcoat.2014.04.010
  19. Lin, Y., Li, D., Hu, J., Xiao, G., Wang, J., Li, W., Lin, Y., Li, D., Hu, J., Xiao, G., Wang, J., Li, W., Fu, X. (2012). Fu, X. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. Journal of Physical Chemistry C, 116(9), 5764-5772. DOI: 10.1021/jp211222w
  20. Mostafaei, A., Nasirpouri, F. (2013). Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. Journal of Coatings Technology and Research, 10(5), 679-694. DOI: 10.1007/s11998-013-9487-1
  21. Xu, C., Fang, L., Huang, Q., Yin, B., Ruan, H., Xu, C., Fang, L., Huang, Q., Yin, B., Ruan, H., Li, D. (2013). Li, D. (2013). Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. Thin Solid Films, 531, 255-260. DOI: 10.1016/j.tsf.2012.12.039
  22. Li, Y., Yu, Y., Wu, L., Zhi, J. (2013). Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Applied Surface Science, 273, 135-143. DOI: 10.1016/j.apsusc.2013.01.213
  23. Ohno, T., Numakura, K., Itoh, H., Suzuki, H., Ohno, T., Numakura, K., Itoh, H., Suzuki, H., Matsuda, T. (2009). Matsuda, T. (2009). Control of the quantum size effect of TiO2-SiO2 hybrid particles. Materials Letters, 63(20), 1737-1739. DOI: 10.1016/j.matlet.2009.05.032
  24. Joo, J.B., Lee, I., Dahl, M., Moon, G.D., Zaera, F., Yin, Y. (2013). Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Advanced Functional Materials, 23(34), 4246-4254. DOI: 10.1002/adfm.201300255
  25. Joo, J.B., Zhang, Q., Lee, I., Dahl, M., Zaera, F., Yin, Y. (2012). Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Advanced Functional Materials, 22(1), 166-174. DOI: 10.1002/adfm.201101927
  26. Chen, M.L., Qu, Y.Y., Yang, L., Gao, H. (2008). Chen, M.L., Qu, Y.Y., Yang, L., Gao, H. (2008). Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Science China Chemistry, 51(9), 848-852. DOI: 10.1007/s11426-008-0069-5
  27. Wei, Z., Zhang, Q., Liu, Y., Xiong, R., Pan, C., Shi, J. (2011). Synthesis and photocatalytic activity of polyaniline-TiO2 composites with bionic nanopapilla structure. Journal of Nanoparticle Research, 13, 3157–3165. DOI: 10.1007/s11051-010-0212-z
  28. Zhang, Q., Lee, I., Joo, J.B., Zaera, F., Yin, Y. (2013). Core–shell nanostructured catalysts. Accounts of Chemical Research, 46(8), 1816–1824. DOI: 10.1021/ar300230s
  29. Hashemi-Nasab, R., Mirabedini, S.M. (2013). Effect of silica nanoparticles surface treatment on in situ polymerization of styrene-butyl acrylate latex. Progress in Organic Coatings, 76(7-8), 1016-1023. DOI: 10.1016/j.porgcoat.2013.02.016
  30. Li, X., Wang, D., Cheng, G., Luo, Q., An, J., Wang, Y. (2008). Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 81, 267-273. DOI: 10.1016/j.apcatb.2007.12.022
  31. Wang, F., Min, S., Han, Y., Feng, L. (2010). Wang, F., Min, S., Han, Y., Feng, L. (2010). Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices and Microstructures, 48(2), 170-180. DOI: 10.1016/j.spmi.2010.06.009
  32. Kim, B.S., Lee, K.T., Huh, P.H., Lee, D.H., Jo, N.J., Lee, J.O. (2009). In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synthetic Metals, 159, 1369-1372. DOI: 10.1016/j.synthmet.2009.03.012
  33. Xu, S., Jiang, L., Yang, H., Song, Y., Dan, Y. Xu, S., Jiang, L., Yang, H., Song, Y., Dan, Y. (2011). (2011). In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Chinese Journal of Catalysis, 32(3-4), 536-545. DOI: 10.1016/s1872-2067(10)60207-0
  34. Deivanayaki, S., Ponnuswamy, V., Mariappan, R., Jayamurugan, P. (2013). Synthesis and characterization of polypyrrole/TiO2 composites by chemical oxidative method. Optik, 124(12), 1089-1091. DOI: 10.1016/j.ijleo.2012.02.029
  35. Dimitrijevic, N.M., Tepavcevic, S., Liu, Y., Rajh, T., Silver, S.C., Tiede, D.M. (2013). Nanostructured TiO2/polypyrrole for visible light photocatalysis. The Journal of Physical Chemistry C, 117(30), 15540–15544. DOI: 10.1021/jp405562b
  36. Wahyuni, S., Kunarti, E.S., Swasono, R.T., Wahyuni, S., Kunarti, E.S., Swasono, R.T., Kartini, I. (2018). Kartini, I. (2018). Characterization and photocatalytic activity of TiO2 (rod)-SiO2-polyaniline nanocomposite. Indonesian Journal of Chemistry, 18(2), 321-330. DOI: 10.22146/ijc.22550
  37. Christy, P.D., Melikechi, N., Nirmala Jothi, N.S., Suganthi, A.R.B., Sagayaraj, P. (2010). Synthesis of TiO2 nanorods by oriented attachment using EDTA modifier: A novel approach towards 1D nanostructure development. Journal of Nanparticle Research, 12(8), 2875-2882. DOI: 10.1007/s11051-010-9877-6
  38. Rahman, I.A., Padavettan, V. (2012). Rahman, I.A., Padavettan, V. (2012). Synthesis of Silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites: a review. Journal of Nanomaterials, 2012, 1-15. DOI: 10.1155/2012/132424
  39. Wilhelm, P., Stephan, D. (2006). On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements. Journal of Colloid and Interface Science, 293(1), 88-92. DOI: 10.1016/j.jcis.2005.06.047
  40. Fu, G., Vary, P.S., Lin, C.-T. (2005). Anatase TiO2 nanocomposites for antimicrobial coatings. Journal of Physical Chemistry B, 109(IV), 8889-8898. DOI: 10.1021/jp0502196
  41. Zuccheri, T., Colonna, M., Stefanini, I., Santini, C., Di Gioia, D. (2013). Bactericidal activity of aqueous acrylic paint dispersion for wooden substrates based on TiO2 nanoparticles activated by fluorescent light. Materials (Basel), 6(8), 3270-3283. DOI: 10.3390/ma6083270
  42. Baek, I.C., Vithal, M., Chang, J.A.,Yum, J-H., Nazeeruddin, Md.K., Gratzel, M., Chung, Y-C., Seok, S.I. (2009). Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochemistry Communications, 11(4), 909-912. DOI: 10.1016/j.elecom.2009.02.026
  43. Chemseddine, A., Moritz, T. (1999). Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. European Journal of Inorganic Chemistry, 1999(2), 235-245. DOI: 10.1002/(SICI)1099-0682(19990202)1999:2<235::AID-EJIC235>3.0.CO;2-N
  44. Ilican, S., Caglar, Y., Caglar, M., Demirci, B. (2008). Polycrystalline indium-doped ZnO thin films: preparation and characterization. Journal of Optoelectronics and Advanced Materials, 10(10), 2592-2598
  45. Sadhu, S., Poddar, P. (2014). Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity. Journal of Physical Chemistry C, 118(33), 19363-19373. DOI: 10.1021/jp5023983
  46. Singh, A., Vishwakarma, H.L. (2015). Singh, A., Vishwakarma, H.L. (2015). Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Materials Science-Poland, 33(4), 751-759. DOI: 10.1515/msp-2015-0112
  47. Solís-Pomar, F., Martínez, E., Meléndrez, M.F., Pérez-Tijerina, E. (2011). Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Research Letters, 6(1), 1-11. DOI: 10.1186/1556-276X-6-524
  48. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. DOI: 10.1515/pac-2014-1117
  49. Donohue, M.D., Aranovich, G.L. (1998). Adsorption hysteresis in porous solids. Journal of Colloid and Interface Science, 205(1), 121-130. DOI: 10.1006/jcis.1998.5639
  50. Carja, G., Nakamura, R., Aida, T., Niiyama, H. Carja, G., Nakamura, R., Aida, T., Niiyama, H. (2001). (2001). Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous and Mesoporous Materials, 47(2-3), 275-284. DOI: 10.1016/S1387-1811(01)00387-0
  51. Fan, H., Do, D.D., Nicholson, D. (2013). Condensation and evaporation in capillaries with nonuniform cross sections. Industrial and Engineering Chemistry Research, 52(39), 14304-14314. DOI: 10.1021/ie402549z
  52. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E. (1979). Handbook of X ray photoelectron spectroscopy–a reference book of standard spectra for identification and interpretation. Minnesota: Perkin Elmer Corporation
  53. Silversmit, G., De Doncker, G., De Gryse, R. Silversmit, G., De Doncker, G., De Gryse, R. (2002). (2002). A mineral TiO2(001) anatase crystal examined by XPS. Surface Science Spectra, 9(1), 21-29. DOI: 10.1116/11.20020701
  54. Krishnan, P., Liu, M., Itty, P.A., Liu, Z., Rheinheimer, V., Zhang, M-H., Monteiro, P.J.M., Yu, L.E. (2017). Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Scientific Reports, 7, 43298-43309. DOI: 10.1038/srep43298
  55. Wang, D.P., Zeng, H.C. (2009). Multifunctional roles of TiO2 nanoparticles for architecture of complex core-shells and hollow spheres of SiO2–TiO2–polyaniline system. Chemistry of Materials, 21(20), 4811-4823. DOI: 10.1021/cm901509t
  56. Kang, E. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23(97), 277-324. DOI: 10.1016/S0079-6700(97)00030-0
  57. Wu, C.-G., Chen, J.-Y. (1997). Chemical deposition of ordered conducting polyaniline film via molecular self-assembly. Chemistry of Materials, 9(2), 399-402. DOI: 10.1021/cm9602860
  58. Huang, X., Wang, G., Yang, M., Guo, W., Gao, H. (2011). Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Materials Letters, 65(19-20), 2887-2890. DOI: 10.1016/j.matlet.2011.06.005
  59. Liu, Z., Miao, Y.-E., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., Liu, T. (2014). Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. Journal of Colloid Interface Science, 424, 49-55. DOI: 10.1016/j.jcis.2014.03.009
  60. Bellitto, V. (Ed.). (2012). Atomic force microscopy – imaging, measuring and manipulating surfaces at the atomic scale. In Tech. DOI: 10.5772/2673

Last update:

No citation recorded.

Last update:

No citation recorded.