skip to main content

Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel From Waste Cooking Oil Via Leaching Method

1Research Center for Chemistry, National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten, Indonesia

2Chemistry Study Program, Universitas Riau, Pekanbaru, Riau, Indonesia

3Chemical Engineering Study Program, Insitut Teknologi Indonesia, Tangerang Selatan, Banten, Indonesia

4 Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten, Indonesia

5 Chemistry Department, Faculty of Mathematics and Natural Sciences, Kampus Bina Widya, Pekanbaru, 28293, Indonesia

6 Chemical Engineering Department, Faculty of Technic, Institut Teknologi Indonesia, Tangerang Selatan, 15314, Indonesia

View all affiliations
Received: 4 Jan 2024; Revised: 20 Feb 2024; Accepted: 21 Feb 2024; Available online: 24 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The biodiesel synthesis of waste cooking oil (WCO) over a impregnated biochar catalyst was systematically studied. This research aimed to prepare Biochar-based material that comes from coconut coir, activate it, and apply it as a catalyst to the esterification reaction of high-FFA waste cooking oil. Activation of the catalyst was done by impregnation H2SO4 solution in Biochar. The obtained catalyst was characterized by FTIR, XRF, XRD, surface area analyzer, and SEM-EDS. The esterification process was conducted by varying the catalyst weight (5, 7, and 10 wt%) and the reaction temperature (55 and 60 °C). The obtained liquid yields were characterized by GC-MS. The study found that the esterification process worked best with 10 wt% catalysts, a 1:76 mole ratio of oil to alcohol, and a reaction temperature of 60 °C. The waste cooking oil was successfully converted into biodiesel, reaching 84.50% of yield and 77.30% of purity (methyl ester content). Meanwhile, testing using national biodiesel standards with parameter limits of density, viscosity, iodine number, and acid number shows results that meet the requirements. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: biochar; solid-acid catalyst; high-FFA wasted cooking oil, biodiesel synthesis; esterification
Funding: The National Research and Innovation Agency of Indonesia (BRIN)

Article Metrics:

  1. Agipa, A.I., Saputri, W.D., Syoufian, A., Sudiono, S., Budiman, A., Lestari, M.F., Hauli, L., Wijaya, K. (2023). Modification of Nanozirconia with Sulfuric Acid and Calcium Oxide as Heterogeneous Catalysts for Biodiesel Production from Used Coconut Cooking Oil. Moroccan Journal of Chemistry, 11(3), 854–870. DOI: 10.48317/IMIST.PRSM/morjchem-v11i3.40434
  2. Wijaya, K., Hauli, L., Prabani, P.F., Candrasasi, Y., Fitriand, E.R. (2023). Comparative study of low-grade crude coconut oil esterification over SO4/ZrO2 and SO4/TiO2 catalysts. AIP Conference Proceedings, 2958, 030001. DOI: 10.1063/5.0174646
  3. Septiani, U., Putri, R., Jamarun, N. (2016). Synthesis of Zeolite ZSM-5 from Rice Husk Ash as Cataliyst in Vegetable Oil Transesterification for Biodiesel Production. Der Pharmacia Lettre, 8(19), 86-91
  4. Nurhayati, N., Amri, T.A., Annisa, N.F., Syafitri, F. (2020). The Synthesis of Biodiesel from Crude Palm Oil (CPO) using CaO Heterogeneous Catalyst Impregnated H2SO4,Variation of Stirring Speed and Mole Ratio of Oil to Methanol. Journal of Physics: Conference Series, 1655, 012106. DOI: 10.1088/1742-6596/1655/1/012106
  5. Afghani, F.A., Sofyan, M.I., Agustiani, T., Sulistia, S., Mansur, D., Sampora, Y., Yubaidah, S., Manawan, M.T., Hafizah, M.A.E., Piton, J.K. (2023). Coconut coir utilization as a catalyst precursor in the transesterification process of used cooking oil into cocodiesel. IOP Conference Series: Earth and Environmental Science, 1201, 012089. DOI: 10.1088/1755-1315/1201/1/012089
  6. Sofyan, M.I., Ma’ruf, M., Mas Ayu Elita Hafizah, Azwar Manaf (2021). The Synthesis of Coconut Methyl Ester Using Organic Catalytic Agents. Majalah Ilmiah Pengkajian Industri, 15(3), 161–167. DOI: 10.29122/mipi.v15i3.5058
  7. Garg, R., Sabouni, R., Ahmadipour, M. (2023). From waste to fuel: Challenging aspects in sustainable biodiesel production from lignocellulosic biomass feedstocks and role of metal organic framework as innovative heterogeneous catalysts. Industrial Crops and Products, 206, 117554. DOI: 10.1016/j.indcrop.2023.117554
  8. Ali, M.A., Al-Hydary, I.A., Al-Hattab, T.A. (2017). Nano-Magnetic Catalyst CaO-Fe3O4 for Biodiesel Production from Date Palm Seed Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 460–468. DOI: 10.9767/bcrec.12.3.923.460-468
  9. Huang, Z., ChenYang, Y., Wang, X., Cai, R., Han, B. (2024). Biodiesel synthesis through soybean oil transesterification using choline-based amino acid ionic liquids as catalysts. Industrial Crops and Products, 208, 117869. DOI: 10.1016/j.indcrop.2023.117869
  10. Mishra, R.K., Mohanty, K. (2023). A review of the next-generation biochar production from waste biomass for material applications. Science of The Total Environment, 904, 167171. DOI: 10.1016/j.scitotenv.2023.167171
  11. Cong, W.J., Nanda, S., Li, H., Fang, Z., Dalai, A.K., Kozinski, J.A. (2021). Metal-organic framework-based functional catalytic materials for biodiesel production: A review. Green Chemistry, 23(7), 2595–2618. DOI: 10.1039/d1gc00233c
  12. Kalapathy, U., Proctor, A., Shultz, J. (1999). A simple method for production of pure silica from rice hull ash. Bioresource Technology, 73(3), 257-262. DOI: 10.1016/S0960-8524(99)00127-3
  13. Shah, K.A., Parikh, J.K., Dholakiya, B.Z., Maheria, K.C. (2014). Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics. Chemical Papers, 68(4), 472–483. DOI: 10.2478/s11696-013-0488-4
  14. Kastner, J.R., Miller, J., Geller, D.P., Locklin, J., Keith, L.H., Johnson, T. (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today, 190(1), 122–132. DOI: 10.1016/j.cattod.2012.02.006
  15. Bhatia, S.K., Gurav, R., Choi, T.R., Kim, H.J., Yang, S.Y., Song, H.S., Park, J.Y., Park, Y.L., Han, Y.H., Choi, Y.K., Kim, S.H., Yoon, J.J., Yang, Y.H. (2020). Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresource Technology, 302, 122872. DOI: 10.1016/j.biortech.2020.122872
  16. Granados, M.L., Alonso, D.M., Sádaba, I., Mariscal, R., Ocón, P. (2009). Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO. Applied Catalysis B: Environmental, 89(1–2), 265–272. DOI: 10.1016/j.apcatb.2009.02.014
  17. Vadery, V., Narayanan, B.N., Ramakrishnan, R.M., Cherikkallinmel, S.K., Sugunan, S., Narayanan, D.P., Sasidharan, S. (2014). Room temperature production of jatropha biodiesel over coconut husk ash. Energy, 70, 588–594. DOI: 10.1016/j.energy.2014.04.045
  18. Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97. DOI: 10.17509/ijost.v4i1.15806
  19. Fahmi, F., Widiyastuti, W., Setyawan, H. (2020). Graphitization of coconut shell charcoal for sulfonated mesoporous carbon catalyst preparation and its catalytic behavior in esterification reaction. Bulletin of Chemical Reaction Engineering and Catalysis, 15(2), 538–544. DOI: 10.9767/bcrec.15.2.7745.538-544
  20. Stuart, B.H. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd
  21. Trukhin, A. (2021). Silicon dioxide and the luminescence of related materials : crystal polymorphism and the glass state. Cambridge Scholars Publishing
  22. Paukshtis, E.A., Yaranova, M.A., Batueva, I.S., Bal’zhinimaev, B.S. (2019). A FTIR study of silanol nests over mesoporous silicate materials. Microporous and Mesoporous Materials, 288, 109582. DOI: 10.1016/j.micromeso.2019.109582
  23. Latebo, S., Bekele, A., Abeto, T., Kasule, J. (2022). Optimization of transesterification process and characterization of biodiesel from soapstock using silica sulfuric acid as a heterogeneous solid acid catalyst. Journal of Engineering Research (Kuwait), 10(1), 78–100. DOI: 10.36909/jer.12003
  24. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603-619. DOI: 10.1351/pac198557040603
  25. Cao, M., Lu, M., Yin, H., Zhu, Q., Xing, K., Ji, J. (2023). Effect of hemicellulose extraction pretreatment on sulfonated corncob biochar for catalytic biodiesel production. Journal of Environmental Chemical Engineering, 11(1), 109058. DOI: 10.1016/j.jece.2022.109058
  26. Yusuff, A.S., Thompson-Yusuff, K.A., Porwal, J. (2022). Sulfonated biochar catalyst derived from eucalyptus tree shed bark: synthesis, characterization and its evaluation in oleic acid esterification. RSC Advances, 12(17), 10237–10248. DOI: 10.1039/D1RA09179D
  27. Zhong, J., Francisco, J.S. (2020). Catalytic and autocatalytic chemical processes in the atmosphere. Annual Reports in Computational Chemistry, 16, 157–185. DOI: 10.1016/bs.arcc.2020.07.003
  28. Flego, C., Carati, A., Perego, C. (2001). Methanol interaction with mesoporous silica–aluminas. Microporous and Mesoporous Materials, 44–45, 733–744. DOI: 10.1016/S1387-1811(01)00255-4
  29. Liang, X., Xiao, H., Qi, C. (2013). Efficient procedure for biodiesel synthesis from waste oils using novel solid acidic ionic liquid polymer as catalysts. Fuel Processing Technology, 110, 109–113. DOI: 10.1016/j.fuproc.2012.12.002
  30. Lam, M.K., Lee, K.T., Mohamed, A.R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500–518. DOI: 10.1016/j.biotechadv.2010.03.002
  31. Komite Teknis Bioenergi (2015). SNI 7182:2015 Biodiesel. BSN 2–3
  32. Mokhtar, M., Sukmono, A., Setiapraja, H., Ma’ruf, M., Yubaidah, S., Haryono, I., Rochmanto, B., Soewono, R.T., Adhi Sukra, K.F., Thahar, A., Manurung, E., Wibowo, C.S., Widodo, S., Supriyadi, F., Abriyant, R.Y., Abriyant, R.Y., Suntoro, D., Faridha, F., Reksowardojo, I.K. (2023). Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: a comprehensive road test and laboratory evaluation. Biofuel Research Journal, 10(03), 1876–1889. DOI: 10.18331/brj2023.10.3.2
  33. Zappi, M., Hernandez, R., Sparks, D., Horne, J., Brough, M., Arora, S.M., Motsenbocker, W.D. (2003). A Review of the Engineering Aspects of the Biodiesel Industry, Laboratory Report, ET-03-003, MSU Environmental Technology Research and Applications (E-TECH), Mississippi State University
  34. Andrianti, I., Monde, J., Fauzan, A., Lorianti, L. (2019). Pengaruh Blending Biofuel dari Minyak Jelantah Terhadap Kerosin (Effect of Blending Biofuel from Waste Cooking Oil on Kerosene). Chemical Engineering Research Articles, 2(2), 90-98. DOI: 10.25273/cheesa.v2i2.5487

Last update:

No citation recorded.

Last update:

No citation recorded.