skip to main content

Self-Polymerization Reaction of Epoxidized Oleic Acid: Kinetic and Product Characterization

1Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia, Jalan Kaliurang KM 14.5, Yogyakarta, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta, Indonesia

Received: 7 Jul 2023; Revised: 24 Aug 2023; Accepted: 24 Aug 2023; Available online: 5 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Epoxidized oleic acid can be transformed into vegetable oil-based polyesters through a self-polymerization reaction. This study aims to develop the kinetic model for the polymerization reaction between epoxide and carboxyl groups and the product characterization regarding its functional groups, molecular weight, and thermal stability. The polymerization reaction was carried out at the temperature of 120–180 °C for 2–6 h with the highest conversion of oxirane number up to 97%. Kinetic study showed one-step reaction model between oxirane and carboxylic group gives the activation energy value of 34.71 kJ/mol. Furthermore, the two simultaneous reaction model with further reaction between oxirane group and hydroxyl group also taken into account. The later provides a better agreement between the experimental data and the calculated conversion value. The activation energy values in the first and second steps are 38.61 and 26.00 kJ/mol, respectively. The product characterization showed that adding adipic acid did not significantly affect the polymer's molecular weight and thermal stability. The polydisperse characteristics of the poly(oleic acid) produced in this study enable poly(oleic acid) to be used as a lubricant, a polymer additive, or a precursor to produce polymers with higher molecular weights by taking advantage of the accessibility of OH groups. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Poly(oleic acid); Step-growth Polymerization Kinetic; Ring-opening polymerization; Vegetable Oil-based Polyester
Funding: LPDP (Indonesia Endowment Fund for Education, Ministry of Finance, Republic of Indonesia)

Article Metrics:

  1. Gobin, M., Loulergue, P., Audic, J.L., Lemiègre, L. (2015). Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Industrial Crops and Products, 70, 213–220. DOI: 10.1016/j.indcrop.2015.03.041
  2. Miao, S., Wang, P., Su, Z., Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692–1704. DOI: 10.1016/j.actbio.2013.08.040
  3. Rayung, M., Aung, M.M., Ahmad, A., Su’ait, M.S., Abdullah, L.C., Jamil, S.N.A.M. (2019). Characteristics of Ionically Conducting Jatropha Oil-based Polyurethane Acrylate Gel Electrolyte Doped with Potassium Iodide. Materials Chemistry and Physics, 222, 110–117. DOI: 10.1016/j.matchemphys.2018.10.009
  4. Espinosa, L.M. De, Meier, M.A.R. (2011). Plant oils : The perfect renewable resource for polymer science ?! European Polymer Journal, 47(5), 837–852. DOI: 10.1016/j.eurpolymj.2010.11.020
  5. Uyama, H. (2018). Functional polymers from renewable plant oils. Polymer Journal, 50, 1003–1011. DOI: 10.1038/s41428-018-0097-8
  6. Miao, S., Zhang, S., Su, Z., Wang, P. (2008). Chemoenzymatic Synthesis of Oleic Acid-Based Polyesters for Use as Highly Stable Biomaterials. Journal of Polymer Science: Part A: Polymer Chemistry, 46(12), 4243–4248. DOI: 10.1002/pola.22721
  7. Nicolau, A., Mariath, R.M., Martini, E.A., dos Santos Martini, D., Samios, D. (2010). The polymerization products of epoxidized oleic acid and epoxidized methyl oleate with cis-1,2-cyclohexanedicarboxylic anhydride and triethylamine as the initiator: Chemical structures, thermal and electrical properties. Materials Science and Engineering C, 30(7), 951–962. DOI: 10.1016/j.msec.2010.04.014
  8. Sander, M.M., Nicolau, A., Guzatto, R., Samios, D. (2012). Plasticiser effect of oleic acid polyester on polyethylene and polypropylene. Polymer Testing, 31(8), 1077–1082. DOI: 10.1016/j.polymertesting.2012.08.006
  9. Roumanet, P., Laflèche, F., Jarroux, N., Raoul, Y., Claude, S., Guégan, P. (2013). Novel aliphatic polyesters from an oleic acid based monomer. Synthesis, epoxidation, cross-linking and biodegradation. European Polymer Journal, 49(4), 813–822. DOI: 10.1016/j.eurpolymj.2012.08.002
  10. Wu, Y., Li, A., Li, K. (2014). Development and evaluation of pressure sensitive adhesives from a fatty ester. Journal of Applied Polymer Science, 131(23), 41143. DOI: 10.1002/app.41143
  11. Omrani, I., Ahmadi, A., Farhadian, A., Shendi, H.K., Babanejad, N., Nabid, M.R. (2016). Synthesis of a bio-based plasticizer from oleic acid and its evaluation in PVC formulations. Polymer Testing, 56, 237–244. DOI: 10.1016/j.polymertesting.2016.10.027
  12. Pang, K., Kotek, R.Ã., Tonelli, A. (2006). Review of conventional and novel polymerization processes for polyesters. Progress in Polymer Science, 31, 1009–1037. DOI: 10.1016/j.progpolymsci.2006.08.008
  13. Jérôme, C., Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews, 60, 1056–1076. DOI: 10.1016/j.addr.2008.02.008
  14. Shan, P., Chen, N., Hao, C., Liu, H., Zhang, X. (2020). Facile and solvent-free synthesis of a novel bio-based hyperbranched polyester with excellent low-temperature flexibility and thermal stability. Industrial Crops and Products, 148, 112302. DOI: 10.1016/j.indcrop.2020.112302
  15. Testud, B., Pintori, D., Grau, E., Taton, D., Cramail, H. (2017). Hyperbranched polyesters by polycondensation of fatty acid-based AB: N-type monomers. Green Chemistry, 19(1), 259–69. DOI: 10.1039/c6gc02294d
  16. Zhai, X.Y., Hu, S.B., Shi, L., Zhou, Y.G. (2018). Synthesis of Poly(silyl ethers) via Iridium-Catalyzed Dehydrocoupling Polymerization. Organometallics, 37(14), 2342–2347. DOI: 10.1021/acs.organomet.8b00316
  17. Matsumoto, K., Komuro, H., Kai, T., Jikei, M., (2013). Synthesis of poly(ether sulfone)s by self-polycondensation of AB-type monomers. Polymer Journal, 45, 909–914. DOI: 10.1038/pj.2013.11
  18. Campos, R., Mansur, A.A., Cook, C.H., Batchelor, B., Iacono, S.T., Smith, D.W. (2014). AB-type monomers for the preparation of perfluorocycloalkene (PFCA) aryl ether polymers. Journal of Fluorine Chemistry, 166, 60–68. DOI: 10.1016/j.jfluchem.2014.07.013
  19. Zhang, K., Tkachov, R., Ditte, K., Kiriy, N., Kiriy, A., Voit, B. (2020). AB‐ Versus AA+BB‐Suzuki Polycondensation: A Palladium/Tris( tert ‐butyl)phosphine Catalyst Can Outperform Conventional Catalysts. Macromolecular Rapid Communications, 41(1), 1900521. DOI: 10.1002/marc.201900521
  20. Sawitri, D.R., Mulyono, P., Rochmadi, R., Budiman, A. (2021). Chemical Epoxidation of Oleic Acid to Produce AB Type Monomer for Fatty-Acid-Based Polyester Synthesis. Jurnal Teknologi, 83(6), 157–166. DOI: 10.11113/jurnalteknologi.v83.16912
  21. Bahadi, M., Salih, N., Salimon, J. (2021). Synthesis and characterization of biodegradable palm palmitic acid based bioplastic. Biointerface Research in Applied Chemistry, 11(6), 14359–14371. DOI: 10.33263/BRIAC116.1435914371
  22. Hurrle, S., Goldmann, A.S., Gliemann, H., Mutlu, H., Barner-Kowollik, C. (2018). Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Letters, 7(2), 201–207. DOI: 10.1021/acsmacrolett.7b01001
  23. Wang, C., Wang, S., Zhang, Y., Wang, Z., Liu, J., Zhang, M. (2018). Self-polymerization and co-polymerization kinetics of gadolinium methacrylate. Journal of Rare Earths, 36(3), 298–303. DOI: 10.1016/j.jre.2017.09.015
  24. Chen, S.Q., He, C., Song, G., Li, L., Li, H.J., Haleem, A., He, W.D. (2020). Kinetically controlled cyclization in step-growth polymerization of AB2 macromonomer: Role of molar mass of macromonomer. Polymer, 195, 122446. DOI: 10.1016/j.polymer.2020.122446
  25. Cheng, K.C., Su, Y.Y., Chuang, T.H., Guo, W., Su, W.F. (2010). Kinetic model of hyperbranched polymers formed by self-condensing vinyl or self-condensing ring-opening polymerization of AB monomers activated by stimuli with different reactivities. Macromolecules, 43(21), 8965–8970. DOI: 10.1021/ma101740r
  26. Sabahi, N., Roohani, I., Wang, C.H., Farajzadeh, E., Li, X. (2023). Thermoplastic polyurethane-based shape memory polymers with potential biomedical application: The effect of TPU soft-segment on shape memory effect and cytocompatibility. Polymer, 283, 126189. DOI: 10.1016/j.polymer.2023.126189
  27. Bueno, L., Toro, C., Martín, M. (2015). Techno-economic evaluation of the production of polyesters from glycerol and adipic acid. Chemical Engineering Research and Design, 93, 432–440. DOI: 10.1016/j.cherd.2014.05.010
  28. Vibha, K., Negi, S. (2020). Enzymatic plasticising of lignin and styrene with adipic acid to synthesize a biopolymer with high antioxidant and thermostability. Polymer Degradation and Stability, 174, 109081. DOI: 10.1016/j.polymdegradstab.2020.109081
  29. Hosseini, A., Ramezani, S., Tabibiazar, M., Ghorbani, M., Samadi Kafil, H. (2021). Fabrication of cumin seed oil loaded gliadin-ethyl cellulose nanofibers reinforced with adipic acid for food packaging application. Food Packaging and Shelf Life, 30, 100754. DOI: 10.1016/j.fpsl.2021.100754
  30. Paquot, C. (1982). Standard methods for the analysis of oils, fats and derivatives. Pure and Applied Chemistry, 54(1), 233–246. DOI: 10.1351/pac198254010233
  31. Rudin, A., Choi, P. (2013). Polymer Reaction Engineering. The Elements of Polymer Science & Engineering, 495–520. DOI: 10.1016/b978-0-12-382178-2.00012-2
  32. Shrivastava, A. (2018). 2 - Polymerization. Introduction to Plastics Engineering, p. 17–48
  33. Hamerton, I., McNamara, L.T., Howlin, B.J., Smith, P.A., Cross, P., Ward, S., (2014). Examining the kinetics of the thermal polymerization of commercial aromatic bis-benzoxazines. Journal of Polymer Science, Part A: Polymer Chemistry, 52(14), 2068–2081. DOI: 10.1002/pola.27231

Last update:

No citation recorded.

Last update:

No citation recorded.