skip to main content

Carbon Microspheres with Cr(VI) Adsorption Performance were Prepared by In-situ Hydrothermal Carbonization Method

1School of Materials and Chemical Engineering, Xuzhou University of Technology, China

2School of Chemistry and Environmental Science, Yili Normal University, 835000, Yining, China

Received: 24 Aug 2023; Revised: 29 Sep 2023; Accepted: 30 Sep 2023; Available online: 2 Oct 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Biochar material is a renewable adsorbent widely used for treating contaminated wastewater. The hydrothermal carbon (HTC) were prepared from low polymeric sugars and low concentration glucose under hydrothermal carbonization reactions without using dispersants. The composition and structure of the biochar produced were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Raman spectroscopy (Raman), and N2 adsorption-desorption, indicating that amorphous graphitic carbon was obtained. Experimental results from the static adsorption of Cr(VI)-contaminated wastewater showed that HTCP-2 exhibited the highest adsorption capacity for Cr(VI), with a maximum adsorption capacity of 22.62 mg.g1.The adsorption Cr(VI), MB, and RhB by the synthesized biochar all conformed to the pseudo-second-order kinetic model and Freundlich isotherm, suggesting a multilayer chemical adsorption process. Additionally, the synthesized HTC surface is enriched with a significant amount of oxygen-rich functional groups, which also has good adsorption performance for cationic dyes. Furthermore, the test results of fluorescence, photocurrent, and impedance indicate that HTCP-2 possesses the ability to generate and separate photoinduced charge carriers. This implied that HTCP-2 can be used for the preparation of adsorption photocatalysts, which effectively remove environmental pollutants through the synergistic effect of adsorption-photocatalysis. This study provides a research foundation for advancing water treatment technologies. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Hydrothermal carbonization; Low polymerization sugar; Adsorpotion removal; Hexavalent chromium; Renewable
Funding: Natural Natural Science Foundation of China under contract No. 22202169; Science and Technology Project of Xuzhou under contract No. KC21286; Innovation and Entrepreneurship Projects for College Students under contract xcx2023007, xcx2023018.

Article Metrics:

  1. Liang, C.W., Fu, F.L., Tang, B. (2021). Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging. Journal of Hazardous Materials, 417, 126073. DOI: 10.1016/j.jhazmat.2021.126073
  2. Wang, G.F., Hua, Y.Y., Su, X., Komarneni, S., Ma, S.J., Wang, Y.J. (2016). Cr(VI) adsorption by montmorillonite nanocomposites. Applied Clay Science, 124-125, 111-118. DOI: 10.1016/j.clay.2016.02.008
  3. Cao, W., Wang, Z.Q., Ao, H.T., Yuan, B.L. (2018). Removal of Cr(VI) by corn stalk based anion exchanger: the extent and rate of Cr(VI) reduction as side reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, 424-432. DOI: 10.1016/j.colsurfa.2017.12.049
  4. Zhang, L.L., An, B.H., Chen, H.J., Chu, J.J., Ma, J.X., Fan, Y.M., Wang, Z.G. (2022). Botryoidal nanolignin channel stabilized ultrasmall PdNP incorporating with filter membrane for enhanced removal of Cr(VI) via synergetic filtration and catalysis. Separation and Purification Technology, 296, 121409. DOI: 10.1016/j.seppur.2022.121409
  5. Barrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223-224, 1-12. DOI: 10.1016/j.jhazmat.2012.04.054
  6. Makama1, A.B., Salmiaton, A., Saion, E.B., Choong, T.S.Y., Abdullah, N. (2017) Photocatalytic Reduction of Aqueous Cr(VI) with CdS under Visible Light Irradiation: Effect of Particle Size. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1), 62-70. DOI: 10.9767/bcrec.12.1.593.62-70
  7. Ji, W., Wang, X.B., Ding, T.Q., Chakir, S., Xu, Y.F., Huang, X.H., Wang, H.T. (2022). Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water. Chemical Engineering Journal, 451, 138973. DOI: 10.1016/j.cej.2022.138973
  8. Wang, J., Wang,W., Zhou S., Gao, X. (2023). Adsorption mechanism of Cr(VI) on woody-activated carbons. Heliyon, 9(2), e13267. DOI: 10.1016/j.heliyon.2023.e13267
  9. Tang, J.P., Liu, Z.Y., Liu, W.F., Finfrock, Y.Z., Ye, Z.H., Liu, X., Liu, P. (2022). Application of Fe-doped biochar in Cr(VI) removal from washing wastewater and residual Cr(VI) immobilization in contaminated soil. Journal of Cleaner Production, 380, 134973. DOI: 10.1016/j.jclepro.2022.134973
  10. Mallik, A.K., Moktadir, M.A., Rahman, M. A., Shahruzzaman M., Rahman Mohammed, M. (2021). Progress in surface-modified silicas for Cr(VI) adsorption: A review. Journal of Hazardous Materials, 423, 127041. DOI: 10.1016/j.jhazmat.2021.127041
  11. Xi, J., Li, H., Xi, J.M., Zheng, J.L., Tan, Z.X. (2020). Preparation of high porosity biochar materials by template method: a review. Environmental Science and Pollution Research, 27, 20675-20684. DOI: 10.1007/s11356-020-08593-8
  12. Yuan, J.H., Amano, Y., Machida, M. (2021). Surface characterization of mesoporous biomass activated carbon modified by thermal chemical vapor deposition and adsorptive mechanism of nitrate ions in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, 126213. DOI: 10.1016/j.colsurfa.2021.126213
  13. Sewu, D.D., Woo, S.H., Lee, D.S. (2021). Biochar from the co-pyrolysis of Saccharina japonica and goethite as an adsorbent for basic blue 41 removal from aqueous solution. Science of the Total Environment, 797, 149160. DOI: 10.1016/j.scitotenv.2021.149160
  14. He, Q., Yu, Y.X., Wang, J., Liu, Y.D. (2021). Kinetic study of the hydrothermal carbonization reaction of glucose and its product structure. Industrial & Engineering Chemistry Research, 60, 4552-4561. DOI: 10.1021/acs.iecr.0c06280
  15. Hu, B.T., Liu, J.T., Chen, C.J., Zhao, Z., Chang, S.J., Kang, P.L. (2017). Ultra-low charge transfer resistance carbons by one-pot hydrothermal method for glucose sensing. Science China Meterials, 60(12): 1234-1244. DOI: 10.1007/s40843-017-9104-9
  16. Inada, M., Enomoto, N., Hojo, J., Hayashi, K. (2016). Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Advanced Powder Technology, 28, 884-889. DOI: 10.1016/j.apt.2016.12.014
  17. Sun, Y.Y., Liu, C., Zan, Y.F., Miao, G., Wang, H., Kong, L.Z. (2018). Hydrothermal carbonization of microalgae (Chlorococcum sp.) for porous carbons with high Cr(VI) adsorption performance. Applied Biochemistry and Biotechnology, 186, 414–424. DOI: 10.1007/s12010-018-2752-0
  18. Liu, Y.T., Wang, Y., Xia, H.T., Wang, Q.H., Chen, X.C., Lv, J.Q., Li, Y., Zhao, J.K., Liu, Y., Yuan, D.Z. (2022). Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 331, 3915–3925. DOI: 10.1007/s10967-022-08421-y
  19. Hao, S.F., Zhang, Q., Wang, Y., Zhang, W.R., Huang, J.T. (2022). Preparation and adsorption properties of green sustainable biomass carbon microspheres. Industrial & Engineering Chemistry Research, 61: 11249-11261. DOI: 10.1021/acs.iecr.2c00094
  20. Ibrahim, M., Hameed, B.H., Ouakouak, A., Din, A.T.M. (2022 ). Effect of hydrothermal carbonization parameters and performance of carbon dioxide adsorption on pineapple peel waste biochar. Chemical Engineering & Technology, 45, 1982-1989. DOI: 10.1002/ceat.202200089
  21. Xu, D.Y., Sun, T., Jia, H.T., Sun, Y.B., Zhu, X.P. (2022). The performance and mechanism of Cr(VI) adsorption by biochar derived from potamogeton crispus at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 167, 105662. DOI: 10.1016/j.jaap.2022.105662
  22. Cai, W.Q., Wei, J.H., Li, Z.L., Liu, Y., Zhou, J.B., Han, B. (2019). Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 102-111. DOI: 10.1016/j.colsurfa.2018.11.062
  23. Sheng, K.C., Zhang, S., Liu, J.L., E, S., Jin, C.D., Xu, Z.H., Zhang, X.M. (2019). Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization. Journal of Cleaner Production, 237, 117831. DOI: 10.1016/j.jclepro.2019.117831
  24. Wu, J., Yang, J.W., Huang, G.H., Xu, C.H., Lin, B.F. (2019). Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. Journal of Cleaner Production, 251, 119717. DOI: 10.1016/j.jclepro.2019.119717
  25. Jian, X.M., Zhuang, X.Z., Li, B.S., Xu, X.W., Wei, Z.B., Song, Y.P., Jiang, E.C. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology & Innovation, 10, 27-35. DOI: 10.1016/j.eti.2018.01.004
  26. Jung, D., Kruse, A., Duman, G., Yanik, J., Zimmermann, M. (2021). Hydrothermal carbonization of fructose—effect of salts and reactor stirring on the growth and formation of carbon spheres. Biomass Conversion and Biorefinery, 13, 6281-6297. DOI: 10.1007/s13399-021-01782-6
  27. Wortmann, M., Keil, W., Diestelhorst, E., Westphal, M., Haverkamp, R., Brockhagen, B., Biedinger, J., Bondzio, L., Wwinberger, C., Baier, D., Tiemann, M., Hütten, A., Hellweg, T., Reiss, G., Schmidt, C., Sattler, K., Frese, N. (2023). Hard carbon microspheres with bimodal size distribution and hierarchical porosity via hydrothermal carbonization of trehalose. RSC Advances, 13: 14181-14189. DOI: 10.1039/d3ra01301d
  28. Ischia, G., Cutillo, M., Guella, G., Bazzanella, N., Cazzanelli, M., Orlandi, M., Miotello, A., Fiori, L. (2022). Hydrothermal carbonization of glucose: Secondary char properties, reaction pathways, and kinetics. Chemical Engineering Journal, 449, 137827. DOI: 10.1016/j.cej.2022.137827
  29. Liu, J., Tian, P., Ye, J.W., Zhou, L., Gong, W.T., Lin, Y., Ning, G.L. (2009). Hydrothermal synthesis of carbon microspheres from glucose: Tuning sphere size by adding oxalic acid. Chemistry Letters, 38(10), 948-949. DOI: 10.1246/cl.2009.948
  30. Yao, Z.Y., Zhang, W.Q., Yu, X.Y. (2023). Fabricating porous carbon materials by one-step hydrothermal carbonization of glucose. Processes, 11(7), 1923. DOI: 10.3390/pr11071923
  31. Li, M., Li, W., Liu, S.X. (2012). Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. Journal of Materials Research, 27, 1117-1123. DOI: 10.1557/jmr.2011.44
  32. Tovar-Martinez, E., Sanchez-Rodriguez, C.E., Sanchez-Vasquez, J.D., Reyes-Reyes, M., López-Sandoval, R. (2023). Synthesis of carbon spheres from glucose using the hydrothermal carbonization method for the fabrication of EDLCs. Diamond and Related Materials, 136, 110010. DOI: 10.1016/j.diamond.2023.110010
  33. Song, X., Mo, J., Fang, Y., Luo, S., Xu, J., Wang, X. (2022). Synthesis of magnetic nanocomposite Fe3O4@ZIF-8@ZIF-67 and removal of tetracycline in water. Environmental Science and Pollution Research, 29, 35204–35216. DOI: 10.1007/s11356-021-18042-9
  34. Liu, Y., Wang, Y., Xia, H., Wang, Q., Chen, X., Lv, J., Li, Y., Zhao, J., Liu, Y., Yuan, D. (2022). Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 331, 3915–3925. DOI: 10.1007/s10967-022-08421-y
  35. Cao, Y., Wu, X., Li, B., Tang, X., Lin, X., Li, P., Chen, H., Huang, F., Wei, C., Wei, J., Qiu, G. (2023). Ca–La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater. Chemosphere, 325, 138378. DOI: 10.1016/j.chemosphere.2023.138378
  36. Zhu, Y., Ji, H., He, K., Blaney, L., Xu, T., Zhao, D. (2022). Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Water Research, 220, 118650. DOI: 10.1016/j.watres.2022.118650
  37. Cheng, S., Zhao, S.D., Xing, B.L., Liu, Y.Z., Zhang, C.X., Xia, H.Y. (2022). Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis. Journal of Cleaner Production, 348, 131301. DOI: 10.1016/j.jclepro.2022.131301

Last update:

No citation recorded.

Last update:

No citation recorded.