skip to main content

Xylene Isomerization using Hierarchically Mesoporous ZSM-5

1Refining Division, Egyptian Petroleum Research Institute, 11727 Nasr City, Cairo, Egypt

2Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Received: 9 Jul 2023; Revised: 29 Aug 2023; Accepted: 30 Aug 2023; Available online: 7 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The current study described the synthesis of H-ZSM-5 zeolites with hierarchical micro-meso- porosity (HM-ZSM-5-x) via the soft-templating route, employing organosilane surfactant, 3-[(trimethoxysilyl) propyl]octyldimethyl-ammonium chloride, as the mesoporous template. The catalytic performance was examined in the isomerization of o-xylene in a fixed-bed reactor at atmospheric pressure. Many techniques were conducted to characterize the catalysts. The X-ray diffraction (XRD) and Fourier Transform Infra Red (FTIR) results affirmed that all mesoporous zeolites possess the characteristic MFI structure, as well as good crystallinity. The N2 physisorption measurements signified that all HM-ZSM-5-x samples have higher surface areas and pore volumes than the micro-ZSM-5 sample, with the mesopores accounting for the vast majority of the total surface areas and pore volumes of HM-ZSM-5-x samples. Moreover, the mesoporosity of the obtained HM-ZSM-5-x zeolites can be simply tuned via the variation of the amount of TPOAC used. Compared with classical micro-ZSM-5, the HM-ZSM-5-0.15 sample possessed a higher o-xylene conversion and p-xylene yield that was attributed to its remarkable textural characteristics in terms of higher surface area and prevailing mesoporous character that led to a reduced diffusion limitation. Importantly, the catalyst manifested superb operational stability within 50 h, indicating high resistance against deactivation through coke deposition. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Xylene isomerization; Hierarchical mesporosity; ZSM-5, Mesoporous ZSM-5, amphiphilic organosilane, soft template
Funding: Science, Technology & Innovation Funding Authority (STDF) Egypt under contract Grant No.: 10757

Article Metrics:

  1. Zhang, B., Xiu, G., Chen, J., Yang, S. (2015). Detonation and deflagration characteristics of p-Xylene/gaseous hydrocarbon fuels/air mixtures. Fuel, 140, 73-80. DOI: 10.1016/j.fuel.2014.09.105
  2. Zepeda, T.A., Pawelec, B., Infantes-Molina, A., Yocupicio, R.I., Alonso-Núñez, G., Fuentes, S., de León, J.N.D., Fierro, J.L.G. (2015). Ortho-xylene hydroisomerization under pressure on HMS-Ti mesoporous silica decorated with Ga2O3 nanoparticles. Fuel, 158, 405-415. DOI: 10.1016/j.fuel.2015.05.056
  3. Nassimbeni, L.R., Báthori, N.B., Patel, L.D., Su, H., Weber, E. (2015). Separation of xylenes by enclathration. Chemical Communications, 51, 3627. DOI: 10.1039/C4CC05329J
  4. Al-Khattaf, S., Tukur, N.M., Al-Amer, A. (2007). 1,2,4Trimethylbenzene Transformation Reaction Compared with its Transalkylation Reaction with Toluene over USY Zeolite Catalyst. Industrial & Engineering Chemistry Research, 46, 4459. DOI: 10.1021/ie0702781
  5. Al-Khattaf, S., Odedairo, T., Balasamy, R.J. (2013). Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions. The Canadian Journal of Chemical Engineering, 91, 607. DOI: 10.1002/cjce.21635
  6. Balasamy, R.J., Odedairo, T., Al-Khattaf, S. (2011). Unique catalytic performance of mesoporous molecular sieves containing zeolite units in transformation of m-xylene. Applied Catalysis A: General, 409, 223-233. DOI: 10.1016/j.apcata.2011.10.007
  7. Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y., Yang, Q., Xiao, F.S. (2014). Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 186, 106-112. DOI: 10.1016/j.micromeso.2013.11.043
  8. Liu, S., Yang, S., He, J., Mao, D., Yin, C. (2021). Efficient synthesis of chain-like ZSM-5 zeolite for the m-xylene isomerization reaction. Inorganic Chemistry Communications, 128, 108564. DOI: 10.1016/j.inoche.2021.108564
  9. Marzouk, N.M., El Naga, A.O.A., Younis, S.A., Shaban, S.A., El Torgoman, A.M., El Kady, F.Y. (2021). Process optimization of biodiesel production via esterification of oleic acid using sulfonated hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. Journal of Environmental Chemical Engineering, 9(2), 105035. DOI: 10.1016/j.jece.2021.105035
  10. da Silva, J.F., da Silva Ferracine, E.D., Cardoso, D. (2022). Improved accessibility of Na-LTA zeolite catalytic sites for the Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 331, 111640. DOI: 10.1016/j.micromeso.2021.111640
  11. Verboekend, D., Nuttens, N., Locus, R., Van Aelst, J., Verolme, P., Groen, J.C., Pérez-Ramírez, J., Sels, B.F. (2016). Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chemical Society Reviews, 45(12), 3331-3352. DOI: 10.1039/C5CS00520E
  12. Zhao, C., Hu, X., Liu, C., Chen, D., Yun, J., Jiang, X., Wei, N., Li, M., Chen, Z. (2022). Hierarchical architectures of ZSM-5 with controllable mesoporous and their particular adsorption/desorption performance for VOCs. Journal of Environmental Chemical Engineering, 10(1), 106868. DOI: 10.1016/j.jece.2021.106868
  13. Wang, Q., Xu, S., Chen, J., Wei, Y., Li, J., Fan, D., Yu, Z., Qi, Y., He, Y., Xu, S., Yuan, C., Zhou, Y., Wang, J., Zhang, M., Su, B., Liu, Z. (2014). Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Advances, 4(41), 21479-21491. DOI: 10.1039/C4RA02695K
  14. Wei, Y., Parmentier, T.E., de Jong, K.P., Zečević, J. (2015). Tailoring and visualizing the pore architecture of hierarchical zeolites. Chemical Society Reviews, 44, 7234-7261. DOI: 10.1039/C5CS00155B
  15. Möller, M., Bein, T. (2013). Mesoporosity – a new dimension for zeolites. Chemical Society Reviews, 42, 3689-3707. DOI: 10.1039/C3CS35488A
  16. Yutthalekha, T., Wattanakit, C., Warakulwit, C., Wannapakdee, W., Rodponthukwaji, K., Witoon, T., Limtrakul, J. (2017). Hierarchical FAU-type zeolite nanosheets as green and sustainable catalysts for benzylation of toluene. Journal of Cleaner Production, 142, 1244-1251. DOI: 10.1016/j.jclepro.2016.08.001
  17. Arumugam, M., Wong, K.L., Nadarajan, A., Lai, S.Y., Goh, C.K., Triwahyono, S., Taufiq-Yap, Y.H. (2022). Green solvothermal synthesis and characterisation of surface organosilylated hierarchical nanozeolite ZSM-5. Microporous and Mesoporous Materials, 329, 111516. DOI: 10.1016/j.micromeso.2021.111516
  18. Khan, W., Jia, X., Wu, Z., Choi, J., Yip, A.C. (2019). Incorporating hierarchy into conventional zeolites for catalytic biomass conversions: A review. Catalysts, 9(2), 127. DOI: 10.3390/catal9020127
  19. Fernandez, C., Stan, I., Gilson, J.P., Thomas, K., Vicente, A., Bonilla, A., Ramírez, J.P. (2010). Hierarchical ZSM-5 Zeolites in Shape-Selective Xylene Isomerization: Role of Mesoporosity and Acid Site Speciation. Chemistry – A European Journal, 16, 6224. DOI: 10.1002/chem.200903426
  20. Chal, R., Gérardin, C., Bulut, M., van Donk, S. (2011). Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 3(1), 67-81. DOI: 10.1002/cctc.201000158
  21. Shanbhag, G.V., Choi, M., Kim, J., Ryoo, R. (2009). Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 264(1), 88-92. DOI: 10.1016/j.jcat.2009.03.014
  22. Inayat, A., Knoke, I., Spiecker, E., Schwieger, W. (2012). Assemblies of mesoporous FAU‐type zeolite nanosheets. Angewandte Chemie, 51(8), 1962-1965. DOI: 10.1002/anie.201105738
  23. Meng, X., Nawaz, F., Xiao, F. (2009). Templating route for synthesizing mesoporous zeolites with improved catalytic properties, Nano Today, 4, 292. DOI: 10.1016/j.nantod.2009.06.002
  24. Zhou, J., Hua, Z.L., Liu, Z.C., Wu, W., Zhu, Y., Shi, J.L. (2011). Hollow Mesoporous Zeolite Microspheres: Hierarchical Macro-/meso-/microporous Structure and Exceptionally Enhanced Adsorption Properties. Dalton Transactions, 40, 12667-12669. DOI: 10.1039/C1DT11684C
  25. Zhu, Y., Hua, Z.L., Zhou, J., Wang, L., Zhao, J., Gong, Y., Wu, W., Ruan, M., Shi, J.L. (2011). Hierarchical Mesoporous Zeolites: Direct Self-Assembly Synthesis in a Conventional Surfactant Solution by Kinetic Control over the Zeolite Seed Formation. Chemistry – A European Journal, 17, 14618–14627. DOI: 10.1002/chem.201101401
  26. Serrano, D.P., García, R.A., Vicente, G., Linares, M., Procházková, D., Čejka, J. (2011). Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. Journal of Catalysis, 279, 366–380. DOI: 10.1016/j.jcat.2011.02.007
  27. Song, J., Ren, L., Yin, C., Ji, Y., Wu, Z., Li, J., Xiao, F.S. (2008). Stable, Porous, and bulky Particles with High External Surface and Large Pore Volume from Self-assembly of Zeolite Nanocrystals with Cationic Polymer. The Journal of Physical Chemistry C, 112, 8609–8613. DOI: 10.1021/jp800598p
  28. Wang, H., Pinnavaia, T.J. (2006) MFI Zeolite with Small and Uniform Intracrystal Mesopores. Angewandte Chemie, 45, 7603–7606. DOI: 10.1002/anie.200602595
  29. Shetti, V.N., Kim, J., Srivastava, R., Choi, M., Ryoo, R. (2008). Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 254, 296–303. DOI: 10.1016/j.jcat.2008.01.006
  30. Choi, M., Choi, H.S., Srivastava, R., Venkatesan, C., Choi, D.H., Ryoo, R. (2006). Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 5, 718–723. DOI: 10.1038/nmat1705
  31. Jacobsen, C.J., Madsen, C., Houzvicka, J., Schmidt, I., Carlsson, A. (2000). Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, 122, 7116. DOI: 10.1021/ja000744c
  32. Na, K., Choi, M., Ryoo, R. (2013). Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 166, 3-19. DOI: 10.1016/j.micromeso.2012.03.054
  33. Sabarish, R., Unnikrishnan, G. (2020). A novel anionic surfactant as template for the development of hierarchical ZSM-5 zeolite and its catalytic performance. Journal of Porous Materials, 27, 691-700. DOI: 10.1007/s10934-019-00852-5
  34. Serrano, D.P., Pinnavaia, T.J., Aguado, J., Escola, J.M., Peral, A., Villalba, L. (2014). Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 227, 15-25. DOI: 10.1016/j.cattod.2013.10.052
  35. Yeong, Y.F., Abdullah, A.Z., Ahmad, A.L., Bhatia, S. (2010). Synthesis, characterization and reactive separation activity of acid-functionalized silicalite-1 catalytic membrane in m-xylene isomerization. Journal of Membrane Science, 360(1-2), 109-122. DOI: 10.1016/j.memsci.2010.05.009
  36. Farshadi, M., Falamaki, C. (2018). Ethylbenzene disproportionation and p-xylene selectivity enhancement in xylene isomerization using high crystallinity desilicated H-ZSM-5. Chinese Journal of Chemical Engineering, 26(1), 116-126. DOI: 10.1016/j.cjche.2017.03.023
  37. Rasouli, M., Atashi, H., Mohebbi-Kalhori, D., Yaghobi, N. (2017). Bifunctional Pt/Fe-ZSM-5 catalyst for xylene isomerization. Journal of the Taiwan Institute of Chemical Engineers, 78, 438-446. DOI: 10.1016/j.jtice.2017.05.018
  38. He, L.C., Xu, H.H., Leng, X.Y., Jin, L.Y., Jia, A.P., Luo, M.F., Chen, J. (2023). Boosting diethylamine selective oxidation over CuO/ZSM-5 catalyst by CeO2 modification. Fuel, 342, 127792. DOI: 10.1016/j.fuel.2023.127792
  39. Sadeghi, M., Farhadi, S., Zabardasti, A. (2020). Magnetic separable zeolite-type ZSM-5/CdS nanorods/MoS2 nanoflowers/MnFe2O4 quaternary nanocomposites: synthesis and application of sonocatalytic activities. New Journal of Chemistry, 44(47), 20878-20894. DOI: 10.1039/D0NJ04056H
  40. Cui, Y., Chen, B., Xu, L., Chen, M., Wu, C. E., Qiu, J., Cheng, G., Wang, N., Xu, J., Hu, X. (2023). CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment. Fuel, 334, 126783. DOI: 10.1016/j.fuel.2022.126783
  41. Subagyo, R., Tehubijuluw, H., Utomo, W.P., Rizqi, H.D., Kusumawati, Y., Bahruji, H., Prasetyoko, D. (2022). Converting red mud wastes into mesoporous ZSM-5 decorated with TiO2 as an eco-friendly and efficient adsorbent-photocatalyst for dyes removal. Arabian Journal of Chemistry, 15(5), 103754. DOI: 10.1016/j.arabjc.2022.103754
  42. Maharani, D.K., Kusumawati, Y., Safitri, W. N., Nugraha, R.E., Holilah, H., Sholeha, N.A., Jalilm, A.A., Bahruji, H., Prasetyoko, D. (2023). Optimization of hierarchical ZSM-5 structure from kaolin as catalysts for biofuel production. RSC Advances, 13(21), 14236-14248. DOI: 10.1039/D3RA01810E
  43. Cui, Y., Qiu, J., Chen, B., Xu, L., Chen, M., Wu, C.E., Cheng, G., Yang, B., Wang, N., Hu, X. (2022). CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification. Fuel, 324, 124679. DOI: 10.1016/j.fuel.2022.124679
  44. Youssef, N.A.E., Amer, E., El Naga, A.O.A., & Shaban, S.A. (2020). Molten salt synthesis of hierarchically porous carbon for the efficient adsorptive removal of sodium diclofenac from aqueous effluents. Journal of the Taiwan Institute of Chemical Engineers, 113, 114-125. DOI: 10.1016/j.jtice.2020.07.018
  45. Hussein, M.F., El Naga, A.O.A., El Saied, M., AbuBaker, M.M., Shaban, S.A., El Kady, F.Y. (2021). Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel. Environmental Technology & Innovation, 21, 101355. DOI: 10.1016/j.eti.2021.101355
  46. Dahshan, A., Saddeek, Y.B., Aly, K.A., Shaaban, K.H.S., Hussein, M.F., El Naga, A.O.A., Shaban, S.A., Mahmoud, S.O. (2019). Preparation and characterization of Li2B4O7–TiO2–SiO2 glasses doped with metal-organic framework derived nano-porous Cr2O3. Journal of Non-Crystalline Solids, 508, 51-61. DOI: 10.1016/j.jnoncrysol.2019.01.002
  47. Mostafa, M.S., El Naga, A.O.A., Galhoum, A.A., Guibal, E., Morshedy, A.S. (2019). A new route for the synthesis of self-acidified and granulated mesoporous alumina catalyst with superior Lewis acidity and its application in cumene conversion. Journal of Materials Science, 54, 5424-5444. DOI: 10.1007/s10853-018-03270-1
  48. Zhao, J., Zhou, J., Chen, Y., He, Q., Ruan, M., Guo, L., Shi, J., Chen, H. (2009). Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach. Journal of Materials Chemistry, 19(41), 7614-7616. DOI: 10.1039/B916862A
  49. Zhou, J., Liu, Z., Li, L., Wang, Y., Gao, H., Yang, W., Xie, Z., Tang, Y. (2013). Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 34(7), 1429-1433. DOI: 10.1016/S1872-2067(12)60602-0
  50. Zhao, Y., Wang, L., Ye, Z., Zhang, H., Xie, S., Zhang, Y., Tang, Y. (2019). Constructing mosaic-tiling MFI zeolite mesocrystal with enhanced catalytic performance. Crystal Growth & Design, 19(11), 6192-6198. DOI: 10.1021/acs.cgd.9b00625

Last update:

No citation recorded.

Last update:

No citation recorded.