skip to main content

Biochar-Modified Layered Double Hydroxide for Highly Efficient on Phenol Adsorption

1Research Center of Inorganic Materials and Coordination Complexes, Universitas Sriwijaya, Palembang, 30139, Indonesia

2Department of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sumatera, Lampung, 35365, Indonesia

3Master Program of Material Science, Graduate School Universitas Sriwijaya, Palembang, 30139, Indonesia

Received: 13 Aug 2023; Revised: 21 Sep 2023; Accepted: 21 Sep 2023; Available online: 26 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

All activities require drinking water. The existence of waste makes water unfit for consumption. Phenol waste is one example of waste that is often found. The toxic and corrosive nature of phenol is very dangerous for life, so its presence must be considered. The adsorption process was carried out using NiAl and ZnAl layered double hydroxides composites with biochar to eliminate the presence of phenol waste The adsorption process was carried out using NiAl and ZnAl layered double hydroxydes materials which were composited with biochar to eliminate the presence of phenol waste. NiAl-Biochar and ZnAl-Biochar composites were successfully prepared, as determined by XRD, FTIR, SEM, and BET analyses. NiAl layered double hydroxide surface area grew from 92.683 to 438.942 m2/g while ZnAl layered double hydroxide surface area increased from 9.621 to 58.461 m2/g. pHpzc of material is between 5.1 and 9.4. Optimal pH of NiAl and ZnAl layered double hydroxide is 3, optimum pH of NiAl-Biochar and ZnAl-Biochar is 5, and optimum pH of Biochar is 7. All kinetic and isotherm models for all materials were pseudo-second-order and Freundlich, respectively. NiAl-Biochar and ZnAl-Biochar have maximal adsorption capacities of 74.62 mg/g and 52.91 mg/g, respectively. The material's reusability indicates that NiAl-Biochar has superior qualities and may be reused for up to five cycles, followed by ZnAl-Biochar, NiAl layered double hydroxide, ZnAl layered double hydroxide, and Biochar. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Biochar; Phenol; Adsorption; Layered double hydroxide
Funding: Universitas Sriwijaya

Article Metrics:

  1. Clover, D.E., de O. Jayme, B., Hall, B.L., Follen, S. (2013). The Nature of Transformation: Environmental Adult Education. The Nature of Transformation: Environmental Adult Education, 3, 1–128. DOI: 10.1007/978-94-6209-146-7
  2. Gami, A.A., Shukor, M.Y., Khalil, K.A., Dahalan, F. A., Khalid, A., Ahmad, S.A. (2014). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology, 2(1), 11-24. DOI: 10.54987/jemat.v2i1.89
  3. Khan, D., Kuntail, J., Sinha, I. (2022). Mechanism of phenol and p-nitrophenol adsorption on kaolinite surface in aqueous medium: A molecular dynamics study. Journal of Molecular Graphics and Modelling, 116, 108251. DOI: 10.1016/j.jmgm.2022.108251
  4. Mishra, P., Singh, K., Dixit, U. (2021). Adsorption, kinetics and thermodynamics of phenol removal by ultrasound-assisted sulfuric acid-treated pea (Pisum sativum) shells. Sustainable Chemistry and Pharmacy, 22, 100491. DOI: 10.1016/j.scp.2021.100491
  5. Cao, Y., Wang, Y., Zhou, F., Huang, J., Xu, M. (2022). Acylamino-functionalized hyper-cross-linked polymers for efficient adsorption removal of phenol in aqueous solution. Separation and Purification Technology, 303, 122229. DOI: 10.1016/j.seppur.2022.122229
  6. Wang, B., Wu, K., Liu, T., Luan, H., Xue, K., Liu, Y., Niu, Y. (2023). International Journal of Biological Macromolecules Synthesis of hyperbranched polyamine dendrimer / chitosan / silica composite for efficient adsorption of Hg (II). International Journal of Biological Macromolecules, 230, 123135. DOI: 10.1016/j.ijbiomac.2023.123135
  7. Jain, M., Khan, S.A., Sahoo, A., Dubey, P., Pant, K.K., Ziora, Z.M., Blaskovich, M.A.T. (2022). Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresource Technology, 352, 127030. DOI: 10.1016/j.biortech.2022.127030
  8. Chaari, I., Touil, A., Medhioub, M. (2021). Adsorption-desorption of phenolic compounds from olive mills wastewater using Tunisian natural clay. Chinese Journal of Chemical Engineering, 40, 287–292. DOI: 10.1016/j.cjche.2020.12.020
  9. Tshemese, S.J., Mhike, W., Tichapondwa, S.M. (2021). Adsorption of phenol and chromium (VI) from aqueous solution using exfoliated graphite: Equilibrium, kinetics and thermodynamic studies. Arabian Journal of Chemistry, 14(6), 103160. DOI: 10.1016/j.arabjc.2021.103160
  10. Lupa, L., Cocheci, L., Pode, R., Hulka, I. (2018). Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide. Separation and Purification Technology, 196, 82–95. DOI: 10.1016/j.seppur.2017.10.003
  11. Xie, X.Z., Xu, L., Pan, Y., Mi, J.X. (2022). Facile synthesis of rose-like composites of zeolites and layered double hydroxides: Growth mechanism and enhanced properties. Chemosphere, 309(P2), 136741. DOI: 10.1016/j.chemosphere.2022.136741
  12. Mahjoubi, F.Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11(1), 90–100. DOI: 10.1016/j.jtusci.2015.10.007
  13. Siregar, P.M.S.B.N., Wijaya, A., Amri, Nduru, J.P., Hidayati, N., Lesbani, A., Mohadi, R. (2022). Layered Double Hydroxide/C (C = Humic Acid; Hydrochar) As Adsorbents of Cr(VI). Science and Technology Indonesia, 7(1), 41–48. DOI: 10.26554/sti.2022.7.1.41-48
  14. Jiang, Y., Shen, Z., Tang, C.S., Shi, B. (2023). Synthesis and application of waste-based layered double hydroxide: A review. Science of the Total Environment, 903, 166245. DOI: 10.1016/j.scitotenv.2023.166245
  15. Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153, 172–186. DOI: 10.1016/j.clay.2017.12.021
  16. Figueiredo, M.P., Suarez, E.D., Petrilli, H.M., Leroux, F., Taviot-Guého, C., Constantino, V.R.L. (2022). Limiting content of trivalent iron to form organic-inorganic single-phase layered double hydroxides hybrids by coprecipitation. Applied Clay Science, 228, 106642. DOI: 10.1016/j.clay.2022.106642
  17. Gouasmia, A., Zouaoui, E., Mekkaoui, A.A., Haddad, A., Bousba, D. (2022). Highly efficient photocatalytic degradation of malachite green dye over copper oxide and copper cobaltite photocatalysts under solar or microwave irradiation. Inorganic Chemistry Communications, 145, 110066. DOI: 10.1016/j.inoche.2022.110066
  18. Siregar, P.M.S.B.N., Palapa, N.R., Wijaya, A., Fitri, E.S., Lesbani, A. (2021). Structural Stability of Ni/Al Layered Double Hydroxide Supported on Graphite and Biochar Toward Adsorption of Congo Red. Science and Technology Indonesia, 6(2), 85–95. DOI: 10.26554/STI.2021.6.2.85-95
  19. Ahmad, N., Suryani, F., Royani, I., Lesbani, A. (2023). Results in Chemistry Charcoal activated as template Mg / Al layered double hydroxide for selective adsorption of direct yellow on anionic dyes. Results in Chemistry, 5, 100766. DOI: 10.1016/j.rechem.2023.100766
  20. Yang, B., Liu, J., Liu, Z., Wang, Y., Cai, J., Peng, L. (2019). Preparation of chitosan/Co-Fe-layered double hydroxides and its performance for removing 2,4-dichlorophenol. Environmental Science and Pollution Research, 26(4), 3814–3822. DOI: 10.1007/s11356-018-3886-x
  21. dos Santos Lins, P.V., Henrique, D.C., Ide, A.H., de Paiva e Silva Zanta, C.L., Meili, L. (2019). Evaluation of caffeine adsorption by MgAl-LDH/biochar composite. Environmental Science and Pollution Research, 26(31), 31804–31811. DOI: 10.1007/s11356-019-06288-3
  22. Pathy, A., Pokharel, P., Chen, X., Balasubramanian, P., Chang, S.X. (2023). Science of the Total Environment Activation methods increase biochar ’ s potential for heavy-metal adsorption and environmental remediation : A global meta-analysis. Science of the Total Environment, 865(August 2022), 161252. DOI: 10.1016/j.scitotenv.2022.161252
  23. Gao, Y., Fang, Z., Lin, W., Chen, H., Bhatnagar, A., Li, J., Xie, Y., Bao, Y., Chen, J., Zhao, H., Meng, J., Chen, W., Wang, H. (2023). Large-flake graphene-modified biochar for the removal of bisphenol S from water: rapid oxygen escape mechanism for synthesis and improved adsorption performance. Environmental Pollution, 317, 120847. DOI: 10.1016/j.envpol.2022.120847
  24. Normah, N., Palapa, N.R., Taher, T., Mohadi, R., Utami, H.P., Lesbani, A. (2021). The Ability of Composite Ni/Al-Carbon Based Material Toward Readsorption of Iron(II) in Aqueous Solution. Science and Technology Indonesia, 6(3), 156–165. DOI: 10.26554/sti.2021.6.3.156-165
  25. Mahgoub, S.M., Shehata, M.R., Zaher, A., Abo El-Ela, F.I., Farghali, A., Amin, R.M., Mahmoud, R. (2022). Cellulose-Based Activated Carbon/Layered Double Hydroxide for Efficient Removal of Clarithromycin Residues and Efficient Role in the Treatment of Stomach Ulcers and Acidity Problems. International Journal of Biological Macromolecules, 215, 705–728. DOI: 10.1016/j.ijbiomac.2022.06.136
  26. Hoang, L.P., Nguyen, T.M.P., Van, H.T., Yılmaz, M., Hoang, T.K., Nguyen, Q.T., Vi, T.M.H., Nga, L.T.Q. (2022). Removal of Tetracycline from aqueous solution using composite adsorbent of ZnAl layered double hydroxide and bagasse biochar. Environmental Technology and Innovation, 28, 102914. DOI: 10.1016/j.eti.2022.102914
  27. Liao, W., Zhang, X., Shao, J., Yang, H., Zhang, S., Chen, H. (2022). Simultaneous Removal of Cadmium and Lead by Biochar Modified with Layered Double Hydroxide. Fuel Processing Technology, 235, 107389. DOI: 10.1016/j.fuproc.2022.107389
  28. Wang, X., Chen, A., Chen, B., Wang, L. (2020). Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. Ecotoxicology and Environmental Safety, 204, 111093. DOI: 10.1016/j.ecoenv.2020.111093
  29. Alminderej, F.M., Younis, A.M., Albadri, A.E.A.E., El-Sayed, W.A., El-Ghoul, Y., Ali, R., Mohamed, A.M.A., Saleh, S.M. (2022). The superior adsorption capacity of phenol from aqueous solution using Modified Date Palm Nanomaterials: A performance and kinetic study. Arabian Journal of Chemistry, 15(10), 104120. DOI: 10.1016/j.arabjc.2022.104120
  30. Yılmaz, Ş. (2022). Facile synthesis of surfactant-modified layered double hydroxide magnetic hybrid composite and its application for bisphenol A adsorption: Statistical optimization of operational variables. Surfaces and Interfaces, 32, 102171. DOI: 10.1016/j.surfin.2022.102171
  31. Mallakpour, S., Azadi, E., Dinari, M. (2023). Removal of cationic and anionic dyes using Ca-alginate and Zn-Al layered double hydroxide/metal-organic framework. Carbohydrate Polymers, 301(PB), 120362. DOI: 10.1016/j.carbpol.2022.120362
  32. Prakongkep, N., Gilkes, R.J., Wiriyakitnateekul, W., Duangchan, A., Darunsontaya , T. (2013). The effects of pyrolysis conditions on the chemical and physical properties of rice husk biochar. International Journal of Material Science (IJMSCI), 3(3), 97–103
  33. Rashed, S.H., Abd-Elhamid, A.I., Abdalkarim, S.Y.H., El-Sayed, R.H., El-Bardan, A.A., Soliman, H.M.A., Nayl, A.A. (2022). Preparation and Characterization of Layered-Double Hydroxides Decorated on Graphene Oxide for Dye Removal from Aqueous Solution. Journal of Materials Research and Technology, 17, 2782–2795. DOI: 10.1016/j.jmrt.2022.02.040
  34. Santosa, S.J., Krisbiantoro, P.A., Minh Ha, T.T., Thanh Phuong, N.T., Gusrizal, G. (2021). Composite of magnetite and Zn/Al layered double hydroxide as a magnetically separable adsorbent for effective removal of humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 614, 126159. DOI: 10.1016/j.colsurfa.2021.126159
  35. Ravuru, S.S., Jana, A., De, S. (2019). Synthesis of NiAl- layered double hydroxide with nitrate intercalation: Application in cyanide removal from steel industry effluent. Journal of Hazardous Materials, 373, 791–800. DOI: 10.1016/j.jhazmat.2019.03.122
  36. Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., Tsang, D.C.W., Ok, Y.S., Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials, 384, 121286. DOI: 10.1016/j.jhazmat.2019.121286
  37. Meili, L., Lins, P. V., Zanta, C.L.P.S., Soletti, J.I., Ribeiro, L.M.O., Dornelas, C.B., Silva, T.L., Vieira, M.G.A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 168, 11–20. DOI: 10.1016/j.clay.2018.10.012
  38. Missau, J., Bertuol, D.A., Tanabe, E.H. (2021). Highly efficient adsorbent for removal of Crystal Violet Dye from Aqueous Solution by CaAl/LDH supported on Biochar. Applied Clay Science, 214, 106297. DOI: 10.1016/j.clay.2021.106297
  39. Zubair, M., Aziz, H.A., Ihsanullah, I., Ahmad, M.A., Al-Harthi, M.A. (2022). Engineered biochar supported layered double hydroxide-cellulose nanocrystals composite-: Synthesis, characterization and azo dye removal performance. Chemosphere, 307(P4), 136054. DOI: 10.1016/j.chemosphere.2022.136054
  40. Jadam, M.L., Sarijo, S.H., Jubri, Z. (2022). Synthesis and Characterisation of Layered Double Hydroxides with Varying Divalent Metal Cations: Mg2+, Zn2+, Ca2+. Materials Today: Proceedings, 66, 4015–4019. DOI: 10.1016/j.matpr.2022.05.162
  41. Li, Y., Bi, H.Y., Mao, X.M., Liang, Y.Q., Li, H. (2018). Adsorption behavior and mechanism of core–shell magnetic rhamnolipid–layered double hydroxide nanohybrid for phenolic compounds from heavy metal–phenolic pollutants. Applied Clay Science, 162, 230–238. DOI: 10.1016/j.clay.2018.06.013
  42. Khedri, D., Hessam, A., Moniri, E., Ahmad, H. (2022). Efficient removal of phenolic contaminants from wastewater samples using functionalized graphene oxide with thermo-sensitive polymer : Adsorption isotherms , kinetics , and thermodynamics studies. Surfaces and Interfaces, 35, 102439. DOI: 10.1016/j.surfin.2022.102439
  43. Niaei, H.A., Rostamizadeh, M. (2020). Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: Isotherm, kinetic and thermodynamic studies. Journal of Chemical Thermodynamics, 142, 106003. DOI: 10.1016/j.jct.2019.106003
  44. Budnyak, T.M., Vlasova, N.N., Golovkova, L.P., Slabon, A., Tertykh, V.A. (2019). Bile acids adsorption by chitoan-fumed silica enterosorbent. Colloids and Interface Science Communications, 32, 100194. DOI: 10.1016/j.colcom.2019.100194
  45. Dehmani, Y., Khalki, O. El, Mezougane, H., Abouarnadasse, S. (2021). Comparative study on adsorption of cationic dyes and phenol by natural clays. Chemical Data Collections, 33, 100674. DOI: 10.1016/j.cdc.2021.100674
  46. Keshvardoostchokami, M., Majidi, M., Zamani, A., Liu, B. (2021). Adsorption of phenol on environmentally friendly Fe3O4/ chitosan/ zeolitic imidazolate framework-8 nanocomposite: Optimization by experimental design methodology. Journal of Molecular Liquids, 323, 115064. DOI: 10.1016/j.molliq.2020.115064
  47. Mukherjee, M., Goswami, S., Banerjee, P., Sengupta, S., Das, P., Banerjee, P.K., Datta, S. (2019). Ultrasonic assisted graphene oxide nanosheet for the removal of phenol containing solution. Environmental Technology and Innovation, 13, 398–407. DOI: 10.1016/j.eti.2016.11.006
  48. Liu, X., Tu, Y., Liu, S., Liu, K., Zhang, L., Li, G., Xu, Z. (2021). Adsorption of ammonia nitrogen and phenol onto the lignite surface: An experimental and molecular dynamics simulation study. Journal of Hazardous Materials, 416, 125966. DOI: 10.1016/j.jhazmat.2021.125966
  49. Yousef, R.I., El-Eswed, B., Al-Muhtaseb, A.H. (2011). Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal, 171(3), 1143–1149. DOI: 10.1016/j.cej.2011.05.012
  50. da Gama, B.M.V., do Nascimento, G.E., Sales, D.C.S., Rodríguez-Díaz, J.M., de Menezes Barbosa, C.M.B., Duarte, M.M.M.B. (2018). Mono and Binary Component adsorption of phenol and cadmium using adsorbent derived from peanut shells. Journal of Cleaner Production, 201, 219–228. DOI: 10.1016/j.jclepro.2018.07.291
  51. Tamang, M., Paul, K.K. (2022). Adsorptive treatment of phenol from aqueous solution using chitosan/calcined eggshell adsorbent: Optimization of preparation process using Taguchi statistical analysis. Journal of the Indian Chemical Society, 99(1), 100251. DOI: 10.1016/j.jics.2021.100251
  52. Nakhjiri, M.T., Marandi, G.B., Kurdtabar, M. (2021). Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. Journal of Environmental Chemical Engineering, 9(2), 105039. DOI: 10.1016/j.jece.2021.105039
  53. Dehmani, Y., Lgaz, H., Alrashdi, A.A., Lamhasni, T., Abouarnadasse, S., Chung, I.M. (2021). Phenol adsorption mechanism on the zinc oxide surface: Experimental, cluster DFT calculations, and molecular dynamics simulations. Journal of Molecular Liquids, 324, 114993. DOI: 10.1016/j.molliq.2020.114993
  54. Mandal, A., Mukhopadhyay, P., Das, S.K. (2019). The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration. SN Applied Sciences, 1(2) DOI: 10.1007/s42452-019-0203-3
  55. Ha, N.T.T., Thao, H.T., Ha, N.N. (2022). Physisorption and chemisorption of CO2 on Fe-MIL-88B derivatives: Impact of the functional groups on the electronic properties and adsorption tendency - A theoretical investigation. Journal of Molecular Graphics and Modelling, 112, 108124. DOI: 10.1016/j.jmgm.2022.108124
  56. Shin, J., Kwak, J., Kim, S., Son, C., Lee, Y.G., Baek, S., Park, Y., Chae, K.J., Yang, E., Chon, K. (2022). Facilitated physisorption of ibuprofen on waste coffee residue biochars through simultaneous magnetization and activation in groundwater and lake water: Adsorption mechanisms and reusability. Journal of Environmental Chemical Engineering, 10(3), 107914. DOI: 10.1016/j.jece.2022.107914
  57. Haydari, I., Aziz, K., Ouazzani, N., Mandi, L., Aziz, F. (2023). Green synthesis of reduced graphene oxide and their use on column adsorption of phenol from olive mill wastewater. Process Safety and Environmental Protection, 170, 1079–1091. DOI: 10.1016/j.psep.2022.12.086

Last update:

No citation recorded.

Last update:

No citation recorded.